II NGHIEN CCru & CTNG DUNG THIET KE MOT SO HOAT DONG TOAN HOC TREIM CAC THIET Bl CAM TAY 1 D^y hpc toan vdi s\i ho tr^ cua difn tho^i di dpng (DTDD) 1 1 Hudng ddn hgc sinh tra cdu tdi lieu tham khdo d[.]
II NGHIEN CCru & CTNG DUNG THIET KE MOT SO HOAT DONG TOAN HOC TREIM CAC THIET Bl CAM TAY Nguyin Danh Nam D^y hpc toan vdi s\i ho tr^ cua difn tho^i di dpng (DTDD) 1.1 Hudng ddn hgc sinh tra cdu tdi lieu tham khdo d Vift Nam hifn chUa cd nhieu nghien eiiu thiie nghifm vc sii dyng DTDD ho trp d^y hpc todn d trUdng thdng [3] Tuy nhien, vdi sii phdt trien nhanh ehdng cua cdng nghf thdng tin vd truyen thdng, day hpc todn vdi sii ho trp cua thiet bi ndy se tao eP hpi thudn lpi eho hpe sinh (HS) tiep edn vdi cde tri thiic todn hpc d mpi luc, mpi nPi vi d\i nhU: hoat dpng dpe tdi lifu tren DTDD giiip HS dn bdi, ho^t dpng tra ciiu cde khdi nifm vd cdng thiic todn hpc sii dyng til dien todn hpc tren DTDD, Them vdo dd, hifn mpt so phan mem hinh hpc dpng, phan mem tinh toan d^ii so hay phdn mem thong ke dupe thiet ke phien bdn ddnh eho DTDD nhim giiip HS thao tde, kiem tra vd tinh todn vdi bieu thiic todn hpc dupe de ddng hdn Khdng nhflng the, vdi khd ndng ket noi internet vdi toe dp dang duprc cdi thifn, DTDD cdn hd trp HS tiep cin vdi ede khda hpc trvic tuyen, phien bdn ddnh chp m-learning Cdc trang web thiet ke tren DTDD se la mpt nhfing fing d\ing cd tinh m^n^mit^^rimmi2~ TrUdng Dgi hgc Wtirzhurg, CHLB DUc khd thi cao giiip HS hpe tip HS de dang tiep can vdi bai todn khdo sat hdm sd sii dung mon todn hifu qud hpn [3] 1.2 Thiet kicdc hogt dgng dao hdm ho trg dgy hgc todn aRMHit Trong bdi bdo nay, chiing f(jt>»3x»*3x»-ax-4 tdi gidi thifu mpt Ung dyng dien hinh vifc khai thdc mpt so phan mem todn hpc tren DTDD hd trp HS hpe todn, dd la Math4Mobile (http://WW w.math4 mobile, com) 0ng dyng ndy gom cd cdc chUe nang sau day: Graph2Go: Giiip HS hieu rd hpn ve khai nifm ham sd cung nhu mpt sd van de eP bdn eua dai sd vd gidi tich Dac bift vdi chiic nang bieu dien bpi, phan mem cho phep HS thao tde vdi thj vd nim dUpc phupng trinh bieu dien tUdng ling ciia nd Ngodi ra, phan mem ndy edn ho trp HS khdm phd ve cde phep bien doi thj chUPng trinh todn phd thdng Vi dy, hpc ve hdm sd bde ba d^ng tdng qudt, gido vien cd the hUdng dan HS ve dd thj, xdc djnh diem udn, cde diem Clie trj cua nd qua chUPng Hinh 1: Thao tdc v&i thj hdm so bfic ba tren DTDD trinh Graph2Go tren DTDD Tiep theo, gido vien hudng dan Fit2Go: Phan mem ndy HS thay doi cdc gid tri hf sd cua giiip HS hieu rd ve md hinh hdm sd f(x) = 3x' + 3x^ - 8x - ( d ^ g tuyen tinh hode bic hai) de thay dupc si^ thay ddi (tjnh ^^^ ^.^ ^^ ^.^^ ^^^^ ^^ ^^^ tien CP gian, ddi xiing tam, ) ^^ ^^^ ^i^^^ ^^^^^^g ^^^^^g ^^^^ hinh d ^ g tupng ling eua dd thj ^^^ chfic nang giiip gido ham sd bac ba tren Tfi dd, giiip ^^^ ^g ^^fic cdc hoat ddng • TAP CHi THIET BI GIAO DUC-sd79-3/2012 NGHIEN cau & CTNG DUNG nhdm dUa tren cdc tinh hudng thUe tien qua ldp hpe di dpng Solve2Go: Hd trp HS vifc gidi phUPng trinh vd hf phuong trinh bang phUPng phap thi Dieu giiip HS phdt trien nang lUc dii dodn vifc tim nghifm cua phuong trinh hode he phUPng trinh Vi dy, gido vien hUdng dan HS gidi vd minh ho? ede nghifm sd cua hf phUPng trinh bac nhat mpt an hode he phupng trinh gdm mdt phUPng trinh bde hai vd mpt phUPng trinh bde nhat mpt an (Hinh 2) Yeu eau HS thay ddi hf sd eua cde phupng trinh de thay dUpe sU thay ddi nghifm sd bdi todn bifn loai sd nghifm cua hf phupng trinh cho trUde Hinh 2: Minh hoa nghifm cua hf phie&ng trinh tren DTDD II - Quad2Go: Day la phan cd d^ng ham sd bac hai vd giup mem giiip HS kham pha tinh HS thflc hifn cae thao tac bien chat eua cdc lo^i tfl giac HS cd ddi d6 thi (tjnh tien, co gian), the quan sat, thao tde vdi eae gido vien hfldng dan HS nhap ddi tflpng hinh hpc nham tim day eac diem cua mpt ham tinh chat dae trflng vd hf sd bde hai d?ng f(x) = ax^ + b vao bang gia trj hifn thi tren thdng hda tfl giac - Sketch2Go: Hd trp HS MTBT, sau dd yeu cau cac em vifc khdm pha thi thfle hifn lenh ve day diem eua ham sd hang, ham sd tang va thay ddi cac hf sd eua ham (hoac giam) Nd cd the giup HS sd f(x) = 2x^ + eho dd md hinh hda cac dfl lifu thi cua nd chfla day diem da ve thflc tien vd cho ket qua la (Hinh 3) ede d^ng dd thi tflpng flng Day hpc todn vdi sfl ho trp ciia may tinh bo tiii (MTBT) 2.1 Thiet he cdc hogt dgng md hinh hda Ngodi DTDD dflpc nhac tdi nhfl thiet bi se giup m-learning sfl dyng ed hieu qud ngudn tdi nguyen da dfldc xdy dflng cho hf thdng e-learning thi MTBT ed nhan cung Id mdt giai phdp hd trp trfle tiep tren ldp hpc truyen thdng Gido vien can hfldng dan HS sfl dyng MTBT hd trp tim tdi, khdm phd kien thflc mdi [5] Tuy nhien, ede hoat ddng can dflde kheo leo thiet ke de thiet Hin/i 3: Hotit dong mo Idnh lioii bi ndy khdng trift tieu vai trd tren MTBT cua thao tac tinh toan bang tay Ngodi ra, sfl dyng MTBT vd bang tri nao cua HS Thiet edn eho phep HS tinh todn cdc bi di dpng ndy giup ndng eao nhflng ky nang nhdn biet vd eon so, CO the thflc hifn eac hieu ve eac sd eung nhU nhifm vu vfldt xa khd nang tinh khd nang ddnh gid, kiem tra lai todn eua eon ngfldi va eho ket ket qud; khuyen khich cac hoat qua ehinh xdc Nhieu ket dpng thu thap cdc sd lieu thfle qua dfldc hien thj d dang xap te, thflc hifn ede hoat dpng md xi eung can thiet de giup HS de hinh hda todn hpc Vi dy, hieu hdn MTBT hifn tich vdi mye dich ren luyfn cho HS hdp nhieu ehfle ndng nhfl bang hoat ddng md hinh hod sd lifu tinh todn (vi dy nhfl TI Voyage TAP CHi THI&BI GIAO DUC-sd 79-3/2012 • II NGHIEN CQu & QNG DUNG Of C IXACT U A l giup HS kien t^p tri thfle thdng 2000), md rpng khd ndng thfle Mi/J JtLCOtibUpl „ qua cdc ho^it ddng hpe tdp dien hifn cde ph^p todn phflc t?p (ãy^'f) ã4.9/'+ftôlằ((lO)/+jlii|J61 mpi luc, mpi nPi vd gin vdi nhu ndng luy thfla, gidi phUPng cdc tinh hudng thflc tien Dieu )(2(/)"6-coi(«)-/ trinh, tim nghifm xap xi, day ndy giup cdc em tiet kifm dflpc vd chudi sd, tinh tich phdn, gidi 4.9r+6) thdi gian, tang cfldng hflng thii phUPng trinh vi phdn (vi dy x1(/)=6-co.(pil hpe tdp vd hieu rd hpn y nghia nhu Casio's Classpad vd Texas yi(/)»-4.9-/n 5.7 Clia todn hpc thflc te Instruments' TI-Nspire), hinh Khuyen khich gido vien thiet hpe Sd cap, tinh trung binh Hinh 4: Hopt dpng bieu dien bpi ke cdc ho^t ddng vdi cdc thiet mau, dp Ifch chuan, phdn tich tren MTBT bj di dpng tren ldp hpc truyen da lifu, hd trp HS md hinh hod cde tip SO hfu dUpe thu Thdng qua hoat ddng ndy, thdng vd ldp hpe di dpng la thdp trfle tiep tfl thflc tien [5] HS dflpc lam quen vdi d?ing mpt gidi phdp tdt de trien khai 2.2 Thiet he cdc hogt ddng bieu dien d6 thj vd d^ng bieu m-learning day hpc Tuy hieu dien hdi dien ki hifu ciia ham sd Ifldng nhien, ben canh dd cung can Mpt sd MTBT hifn gide dflpc cho dfldi d^ng tham cd sfl thay ddi ve npi dung vd cung cap cdc chflc nang tinh so Tdm l^i, MTBT giup cdc nhd phfldng phdp trinh bay kien todn tren bdng, ve thi hdm so, gido dye todn hpe phdi xem thflc chfldng trinh sach md hinh hda sd Ufu, giup HS xet l^i npi dung vd hinh thfle gido khoa phd thdng ciia Vift thay dflpc vai trd cua cdc dang ddnh gid (NCTM, 2000) Theo Nam hifn de giao vien cd bieu dien bpi khdc nhfl: cdc nghien cflu cua Leinhardt the de ddng to chflc cdc hoat bdng bieu, thi, phfldng trinh, (1990) vd Hennessy (1998) thi dpng tpdn hpc vdi sfl hd trp cua cdng thflc, ki hifu, ngdn ngfi, cdc loai MTBT khde cd eac thiet bj cam tay cdc Vi dy, thdng qua ho^t dpng ve kha ndng hd trp tdt HS hieu tiet hpc toan dd thj ham sd Ifldng gidc dfldi ve hdm sd vd dd thj (d?uig dd day (Hinh 4), gido vien cd the thj hdm sd, bieu dien d^ so, Tdi li^u tham khao hfldng dan HS thay dflpc sfl hieu ve mdi quan hf gifia cdc [1] Leinhardt, G., thay doi gid tri eiia tham sd a = lo