Khoa hpc Giao due NgMsn DANH GIA HIEU QUA H O A T D O N G C U A T R U O N G QAI HOC DUA TREN CHJ S5 N G U 5 N THU TAI CHINH 1 Tong nguon thu tai chinh Tai chinh, hay noi each khae la ngan sIch cCia md[.]
Khoa hpc Giao due - -NgMsn DANH GIA HIEU QUA H O A T D O N G C U A T R U O N G QAI HOC DUA TREN CHJ S5 N G U N THU TAI CHINH PGS.TS NGUYEN CONG GIAP Hpc vi@n Quin li Giao due Tong nguon thu tai chinh Tai chinh, hay noi each khae la ngan sIch cCia mdt trudng dai hpc, la dieu kien tien quyet cho viec to chdc cle hoat dpng cua nha trudng Tong ngan sach nha trudng hinh t d cac ngu6n thu khdng phai t u nhi^n ma cd, ma la ket q u i hoat ddng cCia nha trudng viec khai t h i c nang lUc cua nha trudng tr&n c^c mat cle chuong trinh dao tao, dpi ngu can bd, gi^o vien, co sd vat chat va cac moi quan he D l y I I chi tiSu hieu qua kinh te tong quat phan anh nang luc lanh dao n h l trudng Tuy nhien, neu chT tieu chi the hien sd lieu cua mdt n I m thi dua vao khdng the danh g i l dUpc hieu q u i kinh te hoat dpng cua n h l trUdng Do vay, de danh gia dUpc chung ta p h l i xem xet chi tieu dudi hai goc dp: Xet ehi tieu dudi goc dp so sanh theo thdi gian (so sanh ddng): Viee so sanh tong nguon thu cOa n h l trudng theo thdi gian se cho thay hieu qua hoat dpng cua tdng nam Cd the so sanh thdng qua (1) gia tri tuyet doi cua ngudn thu va (2) tde dp tang ngudn thu Cd the dien g i l i c^ch so sanh nhu sau: Gil sd nam n, nha trudng thu dUpc A, ddng, nam n^thu dupc Aj ddng thi trUdng hc^ co the x l y ra: Aj > A^i TrUdng hpp cd nghla la nguon thu cua nha trudng nam sau cao hOn nam trudc Thdng tin cho ta nhan dinh tdng ngan sach nha trudng da cd xu hudng tang va hieu q u i hoat ddng cua nha trudng cd tang I6n Tde dp t i n g ngudn thu dUpc x l c djnh nhusau: (A,-A,)/A,>0 A^=A, :TrUdng hpp co nghia nguon thu cCia nha trUong n I m sau so vdi n I m trUdc khong cd gi thay ddi, v l nhuthe ndi ve mat tai ehinh thi hoat ddng cua nha trudng chua cd tien bp nao Toe dp tang ngudn thu dupc x l c dinh nhusau: (A,-A,)/A,=0 A^ < A,: Trudng hpp cd nghia ngudn thu cua nha trudng d l sut g i l m Tde dp tang ngudn thu dupc x l c ^ n h nhusau: (A^-A,)/A, K^: Trudng hpp n l y cd nghTa la ngudn thu t d hoat ddng nghien cCfu khoa hoc, djch vu t u v I n va chuyen giao cdng nghd eCia nha trUdng nam sau cao hem nam trudc Thdng tin cho ta nh|n djnh quy md ngudn thu t d hoat ddng NCKH, dich vu t u van v l chuyen giao cdng nghe cCia nha trudng da cd xu hucffig t i n g Toe dd tang ngudn thu dugc xac djnh nhUsau: (K,-K,)/K,>0 K j ^ K, :TrUdng hop cd nghTa ngudn thu t d hoat ddng nghien edu khoa hpc, djch vu t u van va chuyen giao cong nghe eCia nha trUdng nam sau so vdi nam trudc khdng cd gi thay doi, v l nhu the ndi ve mat t l i chinh thi hoat dpng nghien cdu khoa hoc, djch vu t u v I n va chuyen giao cdng nghS cua nha trudng chUa cd tien bd nao Toe dp t i n g ngudn thu dupe xac djnh nhusau: (K,-K,)/K,=0 Kj< K, :TrUdng hpp cd nghTa ngudn thu t d hoat ddng nghien cdu khoa hpc, djeh vu tUvan v l chuyen giao cong nghe cCia nha trudng da sut g i l m Tde dp tang ngudn thu dUpc x l c djnh nhusau: (K,-K,)/K, 1: Trudng hpp naycd nghTa hoat dpng KHCN thien ve hUdng bao cap; Khi d i n h g i l hieu qua hoat ddng cOa trudng dai hpc thdng qua chi ti^u quy md ngudn thu hpc phi, le phf chung ta cung p h l i phan tich dUdi hai gdc dp ddng va tTnh N^u theo gdc dp ddng thi phan tich chi tieu quy md ngudn thu hoc phi, le phi bien ddi theo thdi gian c l ve quy md tuyet ddi, d v^ tde t i n g h I n g n I m Neu theo gdc dp tTnh thi p h I n tich chi tieu quy md ngudn thu hpc phi, I& phi b I n g cIch so sinh quy md ngudn thu hpc phi, le phi mdt nam giCra trudng dupe phan tich vdi c^c trudng khIc cCing khdi Cd t h ^ di^n g i l i d c h p h I n tich n l y nhu sau: G i l sd nam n, nha trudng thu dUpc H, ddng hpc phi, te phf, nam n^thu dupc H^ ddng hpc phf, l | phi Cd trUdng hpp edthe x l y ra: Hj > H,: Trudng hpp n l y cd nghTa I I ngudn thu hpc phf, IS phf cCia nha trudng nam sau cao hon nam trUdc Thdng tin n l y cho ta nhan djnh quy md ngudn thu hpc phi, le phi cCia nha trudng da cd xu hudng t i n g Tde dd tang ngudn thu hpc phi, le phi dupe x l c djnh nhusau: (H^-H,)/H,>0 H^= H,: TrUdng hpp cd nghTa ngudn thu hpc phi, 1^ phi cCia nha trudng n I m sau so vdi nam trudc khdng ed gi thay ddi, va nhu the ndi ve mat t l i chinh thi hoat ddng dao tao cua nha tardng chua cd tien bd nlo.Tdc dp t i n g ngudn thu hpc phf, le phf dupe xac dinh nhusau: (H2-H,)/H,=0 Hj < H,: TrUdng hpp cd nghTa nguon thu hpc phf, le phi cua n h l trudng da sut g i l m Tde t i n g ngudn thu hpc phf, le phi dupe x l c djnh nhU sau: (H,-H,)/H,