PHOCMOIUIDillUfflRUilGIRUNGHOCPHOIllOniGlllEOHIIiG PHATHIBUVAGI/UQUYETVANflETHOlQUATinHHUtNGSAIUilVI O ThS THjNH TH| BACH TUY^T'''' 1 Dpy hpc phdt hi^n vd gidi quylt vdn d l (PH&GQVD) Id mdt xu hudng dpy[.]
PHOCMOIUIDillUfflRUilGIRUNGHOCPHOIllOniGlllEOHIIiG PHATHIBUVAGI/UQUYETVANflETHOlQUATinHHUtNGSAIUilVI O Dpy hpc phdt hi^n vd gidi quylt vdn d l (PH&GQVD) Id mdt xu hudng dpy hpc tich ci^c dong dupc dp dgng h'ong dpy hpe lodn d cdc Irudng phd thdng hl|n Vdl hlnh thOc dpy hpc ndy, gido vidn (GV) td chOc cho hpc sinh (HS) hpc tdp h-ong hopt ddng vd bdng hopt d^ng Bdn chdt cOa dpy hpc PH&GQVD Id GV phdi dot HS vdo mdt tinh hud'ng gpi vdn d l M$t tinh hudng sai Idm (THSL) sS Id Hnh hudng gpi vdn d l nlu thdo mdn ba dilu kl|n: tdn tgl mit vdn di, ggl nhu cdu nhdn thOc vd khai diy niim tin vdo khd ndng cua bdn thdn cho ngudi hpc, cy thi nhu sou: ThS THjNH TH| B A C H TUY^T' cOo cdc em HS dupe thi) ihdch vdi cdc sal Idm sS njl ro kinh nghl$m d l hdnh mdc phdi nhOng soi Idm dd 2) Tim sai Idm, tim nguvSn nhdn sal ISm vd chfnh xdc hda Idl gidl Sou dua HS vdo THSL, GV phdn ttch THSL Di Hm dilm sai Idm, GV cdn phdn tich mdi ll§n h$ giOo kiln thuc vd kr ndng da cd cua HS vdl THSL dupc dua ra; hudng ddn HS h/ nhdn nhung sai Idm, bilt phdn Hdn Hm nguydn nhdn Ti> dd, HS dua quon dilm khdc phye, si>a chua cdc sai Idm vd h-lnh bdy Idi gidi dung 3} Cdc kiin thuc thu dugc Qua cdc THSL giup HS cung cd kiln thuc cu, hllu chfnh xdc cdc kiln - rdn tgl mdt vdn di ViSc phdt hl^n sol thuc todn hpc, rut cdc kiln thuc cdn Itnh hpi vd Hm h-ong Idl gidi m^t bdi todn ddt HS dung hudc vdn dyng vdo Hnh hudng mdi nhi^m vy Id Hm nguydn nhdn vd sua chua soi Thi/c hdnh day hpc PH&GQVD vdl THSL Hm Ddy chfnh Id nhirng Hnh hudng cd vd'n 1} Dua THSL Dudi ddy, chung tdi dua d l vi HS khdng cd sdn cdu h-d Idi vd cung khdng mpt Hnh hud'ng gpi vdn de: CO sdn mpt ihudt gidi ndo diHm sai Idm vd nguyin VI dy: Gidi phuong h-lnh (PT): nhdn sai Idm - Gcrf nhu cdu nh^ ihuc THSL gpi nhu cdu nhpn ihuc HS mong muon Hm sai Idm vd khdng c h ^ nhdn Idi gidi sai Khi da Hm ro dupc sai Idm, HS sS ed nhu cdu Hm nguy@n nhdn sai Idm 3(x^ -2x + \^^3x + + 2^l7^)=ix^ - Khoi ddy niim tin vdo khd ndng cOa bdn thdn THSL Id mdt Hnh hudng khoi ddy nilm tin vdo khd ndng gidl quylt vdn d l cuo HS N l u HS Kdl cpc suy nghT, v^n dyng cdc kiln thuc, kt ndng da bllt thi cd t h i fim dupe sol Idm, nguyin nhdn sai Idm vd gidi quylt dupc vdn d l Quo dd, HS c6 thi bd sung, dilu chinh, hodn thi|n duprc tri ihik vd kT ndng gidl todn vdi: 3{x-\fiij3^+247^)=(x-\)(.ix+2) (2); Budc 3: (i-i)(3(j-ixV5r*^*2-/(+2)-s»-n-to}-o; Budc4:c^ 3(j-i)(l^rr2+2Virt3)-8(«-i)-io=o(3); Quy Irinh dgy hpc PH&GQVD vdl THSL / / Xdy dgng THSL Trong qud hlnh gidl bdi t$p todn, HS Ihudng mdc phdi cdc sai Idm liin quan din vdn h-i thi>c dd cd vd kr ndng gidl todn GV ddt minh vdo vj hi ci3o HS d l hlnh dung ro oSc THSL md HS cd t h i mdc phdi, h> dd, xdy di/ng THSL d l muc dd ndm vOng kiln thOc Iw chi Slao due s6 285 (fa i * a/aou) -6x-2 {^) Cd HS gidi nhu sou: Budc J : i l u k i e n : x - ( ' ) ; Budc 2: Vdi dilu klSn ('), PT (1) hrong duong Budc 5; o 3(V3:rr2 + V ^ ) - ^ - = (4); Budc d: X6I hdm sd /w=3{ (^ bvdc 5, chlo cd hai v l cho (x - 11 cdn gidl thich thim Id X = khdng Id nghl|m cda PT (3|; cdc budc d, Id chinh xdc; budc chua chinh xdc Nhu vdv, Idl gidi trln cd cdc sal Idm sou: - 5a/ /dm / Sal d budc da thi/c hl|n chlo cd hai v l cho X - (phip chia chi thi/c hi|n dupc (x - ) khdc 0|, nln dSn d i n mdt nghidm X = ; • So/ ldm Ddy cung Id sal Idm v l phip blln ddi tuong duong Cdn gidl thich thim vl x > I khdng Id nghl|m cua FT (3) n8n PT (3) tuong duong vdl PT (4) Ddy cung Id sol Idm v l blln ddi; - Sal lam Sal Idm hllu chua dung djnh II to f ( x | > vdl Vie(-2;l)u(l;+ ' - 61 - Nhu vdy, riidng qua dpy hpc PH&GQVD vdl THSL khdng chi gl6p HS Hip thu dupc cdc kiln thi}c todn md cdn rin luy|n cho cdc em khd ndng phdn dodn, t$p ludn vd hllu dupc y nghlo cdo cdc kiln thdc todn hpc Q T i i lifu tliam kliao i Nguyin Vinli Cdn - U Thong Nhat - Ptian Thanii Quang Sal lim plil biin idii gUl toin NXB Gido IXB Cdi/KIC sirplw^ H 2010 Nguyin Thj Huong l^ang Ken luy?n nang life gidi todn tlieo htldng pitdt Itifn vd gidi quyit vtin dk m^t cdcli sdng 190 cito lufc sinh ichd gidi truong Trung lufc pli8 thdng Lu$n &n tiln si Giao due hQC Vi^n Khoa tufc gido difc, 2002 SUMMAIty in dIscovBfyleainIng andpttstnem solving ts Ihe most irrpottantteachermustaeateprotjtemsltuallonssuggests Teachers matte mistakes situations asl( students totlnderrofs.mlslaltilems Tap chi 6lio due so tia i • »/»om ... cho cd nghidm nhe(t j< = Mil gidi tr$n cd dl j m ndo chua chfnh xdc? 2) Tim sal ISm, nguydn nhdn sai ldm vd chfnh xdc hda hi gidi Phdn tfch vl dv trtn ta thdy, da^ Id bdl lodn gidi PT vd tl cd... cdc bdt PT, chdng hpn nhu bdt PT sou: i(x''-2x + l)(V3i+2 + 2-v/I+2 )> '' - 61 - Nhu vdy, riidng qua dpy hpc PH&GQVD vdl THSL khdng chi gl6p HS Hip thu dupc cdc kiln thi}c todn md cdn rin luy|n... cdc kiln thdc todn hpc Q T i i lifu tliam kliao i Nguyin Vinli Cdn - U Thong Nhat - Ptian Thanii Quang Sal lim plil biin idii gUl toin NXB Gido