1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 147 ppt

5 230 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 293 KB

Nội dung

SỞ GIÁO DỤC ĐÀO TẠO ĐẮK LẮK TRƯỜNG THPT NGUYỄN HUỆ ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút. Câu I: (2,0 điểm) Cho hàm số y = 1 x x − 1. Khảo sát sự biến thiên vẽ đồ thị (C) của hàm số. 2. Tìm tọa độ điểm M thuộc (C), biết rằng tiếp tuyến của (C) tại M vuông góc với đường thẳng đi qua điểm M điểm I(1; 1). Câu II: (2,0 điểm) 1. Giải phương trình: ( ) 3 2 cos cos 2 1 sin . sin cos x x x x x − = + + 2. Giải hệ phương trình: 2 2 2 ( ) 4 1 ( ) 2 7 2 x x y y x x x y y x  + + = −   + − = +   Câu III: (1,0 điểm) Tính tích phân: 1 ln 1 ln e x dx x x+ ∫ Câu IV: (1,0 điểm) Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân đỉnh C; đường thẳng BC’ tạo với mặt phẳng (ABB’A’) góc 0 60 AB = AA’ = a. Gọi M, N, P lần lượt là trung điểm của BB’, CC’, BC Q là một điểm trên cạnh AB sao cho BQ = 4 a . Tính theo a thể tích khối lăng trụ ABC.A’B’C’ chứng minh rằng (MAC) (NPQ)⊥ . Câu V: (1,0 điểm) Chứng minh rằng với mọi số thực không âm a, b, c thỏa mãn điều kiện 3ab bc ca + + = , ta có: 2 2 2 1 1 1 1 2 2 2a b c + + ≤ + + + Câu VI: (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2;1) AC = 2BD. Điểm M 1 (0; ) 3 thuộc đường thẳng AB, điểm N(0;7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương. 2.Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng : 1 : 4 1 2 x t d y t z t =   = −   = − +  ; d 2 : 2 1 3 3 x y z− = = − − d 3 : 1 1 1 5 2 1 x y z+ − + = = . Viết phương trình đường thẳng ∆, biết ∆ cắt ba đường thẳng d 1 , d 2 , d 3 lần lượt tại các điểm A, B, C sao cho AB = BC. Câu VII: (1,0 điểm) Tìm số phức z thỏa mãn : 2 2 2 . 8z z z z+ + = 2z z+ = Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ tên:……………………………………………… SBD:……………… CÂU NỘI DUNG ĐIỂM I-1 (1 điểm) TXĐ : D = R\{1} y’ = 2 1 0 ( 1)x − < − 0,25 lim ( ) lim ( ) 1 x x f x f x →+∞ →−∞ = = nên y = 1 là tiệm cận ngang của đồ thị hàm số 1 1 lim ( ) , lim x x f x + − → → = +∞ = −∞ nên x = 1 là tiệm cận đứng của đồ thị hàm số 0,25 Bảng biến thiên 1 + ∞ - ∞ 1 - - y y' x - ∞ 1 + ∞ Hàm số nghịch biến trên ( ;1)−∞ và (1; )+∞ Hàm số không có cực trị 0,25 Đồ thị : Nhận xét : Đồ thị nhận giao điểm của 2 đường tiệm cận I(1 ;1) làm tâm đối xứng 0,25 I-2 (1 điểm) Với 0 1x ≠ , tiếp tuyến (d) với (C) tại M(x 0 ; 0 0 1 x x − ) có phương trình : 0 0 2 0 0 1 ( ) ( 1) 1 x y x x x x = − − + − − 2 0 2 2 0 0 1 0 ( 1) ( 1) x x y x x ⇔ + − = − − 0,25 (d) có vec – tơ chỉ phương 2 0 1 ( 1; ) ( 1) u x = − − r 0 0 1 ( 1; ) 1 IM x x = − − uuur 0,25 Để (d) vuông góc IM điều kiện là : 0 0 2 0 0 0 0 1 1 . 0 1.( 1) 0 2 ( 1) 1 x u IM x x x x =  = ⇔ − − + = ⇔  = − −  r uuur 0,25 + Với x 0 = 0 ta có M(0,0) + Với x 0 = 2 ta có M(2, 2) 0,25 II-1 (1 điểm) ĐK: sin cos 0x x + ≠ 0,25 Khi đó ( ) ( ) ( ) ( ) 2 1 sin cos 1 2 1 sin sin cosPT x x x x x⇔ − − = + + ( ) ( ) 1 sin 1 cos sin sin .cos 0x x x x x⇔ + + + + = ( ) ( ) ( ) 1 sin 1 cos 1 sin 0x x x⇔ + + + = 0,25 sin 1 cos 1 x x = −  ⇔  = −  (thoả mãn điều kiện) 0,25 2 2 2 x k x m π π π π  = − +  ⇔  = +  ( ) ,k m ∈Z Vậy phương trình đã cho có nghiệm là: 2 2 x k π π = − + 2x m π π = + ( ) ,k m ∈Z 0,25 II-2 (1 điểm) Với x = 0 không nghiệm đúng phương trình Với 0x ≠ , ta có: 2 2 2 2 2 2 2 1 4 1 4 ( ) 2 2 7 1 ( ) 2 7 y x y x y xy x x x x y y x y x y x  + + + =   + + + =  ⇔   + − − = +   + − =   0,25 Đặt 2 1 , y u v x y x + = = + ta có hệ: 2 2 4 4 3, 1 2 7 2 15 0 5, 9 u v u v v u v u v v v u + = = − = =    ⇔ ⇔    − = + − = = − =    0,25 +) Với 3, 1v u= = ta có hệ: 2 2 2 1, 2 1 1 2 0 2, 5 3 3 3 y x y x y x y y y x x y x y x y = =    + = + = + − =  ⇔ ⇔ ⇔     = − = + = = − = −     . 0,25 +) Với 5, 9v u= − = ta có hệ: 2 1 9 5 y x x y  + =  + = −  , hệ này vô nghiệm. Vậy hệ đã cho có hai nghiệm: ( ; ) (2;1), ( ; ) (5; 2).x y x y= = − 0,25 III (1 điểm) Đặt t = 1 ln x+ có 2tdt = 1 dx x x = 1 thì t = 1; x = e thì t = 2 0,25 2 2 1 1 ln 1 2 1 ln e x t dx tdt t x x − = = + ∫ ∫ 0,25 2 3 1 2( ) 3 t t= − = 0,25 2(2 2) 3 − = 0,25 IV (1 điểm) Gọi I là trung điểm A’B’ thì ' ' ' ' ( ' ') ' AA' C I A B C I ABA B C I ⊥  ⇒ ⊥  ⊥  suy ra góc giữa BC’ mp(ABB’A’) chính là góc · 'C BI . Suy ra · 0 ' 60C BI = · 15 ' .tan ' 2 a C I BI C BI= = 0,25 3 . ' ' ' ' ' ' 1 . 15 . . AA'. AA' . ' ' 2 4 ABC A B C A B C a V S CI A B= = = 0,25 / / ' ( ) / /( ' ) / / ' NP BC NPQ C BI PQ C I  ⇒   (1) 0,25 · · · · 0 ' ( ) ' ' 90 AM BI ABM BB I c g c suy ra AMB BIB suy ra AMB B BI = − − = + = ⇒ ⊥ V V . Mặt khác theo chứng minh trên C’I ⊥ AM nên AM ⊥ ( ' )C BI Suy ra (AMC) ⊥ ( ' )C BI (2) Từ (1) (2) suy ra (MAC) (NPQ)⊥ 0,25 V (1 điểm) Bất đẳng thức cần chứng minh tương đương: 2 2 2 2 2 2 2 2 2 4a b b c c a a b c+ + + ≥ 0,25 Đặt x = ab, y = bc, z = ca ta cần chứng minh 2 2 2 4x y z xyz+ + + ≥ với mọi x, y, z không âm thỏa mãn: x + y + z = 3 Không làm mất tính tổng quát giả sử x ≤ y; x ≤ z thì x ≤ 1 ta có: 0,25 2 2 2 2 2 2 2 2 1 4 ( ) ( 2) 4 ( ) ( ) ( 2) 4 4 x y z xyz x y z yz x x y z y z x+ + + − = + + + − − ≥ + + + + − − = 0,25 2 2 2 2 1 (3 ) 4 ( 1) ( 2) 0 4 4 x x x x x + = + − − = − + ≥ Dấu bằng xảy ra khi a = b = c = 1 0,25 Gọi N’ là điểm đối xứng của N qua I thì N’ thuộc AB, ta có : ' ' 2 4 2 5 N I N N I N x x x y y y = − =   = − = −  0,25 Phương trình đường thẳng AB: 4x + 3y – 1 = 0 Khoảng cách từ I đến đường thẳng AB: 2 2 4.2 3.1 1 2 4 3 d + − = = + 0,25 AC = 2. BD nên AI = 2 BI, đặt BI = x, AI = 2x trong tam giác vuông ABI có: 2 2 2 1 1 1 4d x x = + suy ra x = 5 suy ra BI = 5 0,25 Điểm B là giao điểm của đường thẳng 4x + 3y – 1 = 0 với đường tròn tâm I bán kính 5 Tọa độ B là nghiệm của hệ: 2 2 4x 3y – 1 0 ( 2) ( 1) 5x y + =   − + − =  B có hoành độ dương nên B( 1; -1) 0,25 VI -2 (1 điểm) Xét ba điểm A, B, C lần lượt nằm trên ba đường thẳng d 1 , d 2 , d 3 Ta có A (t, 4 – t, -1 +2t) ; B (u, 2 – 3u, -3u) ; C (-1 + 5v, 1 + 2v, - 1 +v) 0,25 A, B, C thẳng hàng AB = BC ⇔ B là trung điểm của AC ( 1 5 ) 2 4 (1 2 ) 2.(2 3 ) 1 2 ( 1 ) 2( 3 ) t v u t v u t v u + − + =   ⇔ − + + = −   − + + − + = −  0,25 Giải hệ trên được: t = 1; u = 0; v = 0 Suy ra A (1;3;1); B(0;2;0); C (- 1; 1; - 1) 0,25 Đường thẳng ∆ đi qua A, B, C có phương trình 2 1 1 1 x y z− = = 0,25 VII (1 điểm) Gọi z = x + iy ta có 2 2 2 2 ;z x iy z z zz x y= − = = = + 0,25 2 2 2 2 2 2 2 . 8 4( ) 8 ( ) 2 (1)z z z z x y x y+ + = ⇔ + = ⇔ + = 0,25 2 2 2 1 (2)z z x x+ = ⇔ = ⇔ = 0,25 Từ (1) (2) tìm được x = 1 ; y = 1± Vậy các số phức cần tìm là 1 + i 1 - i 0,25 >Sống hiên ngang danh lợi ta coi thường! >Đừng thấy bóng mình to lớn mà tưởng mình vĩ đại! Nguyễn Thế Lực . DỤC VÀ ĐÀO TẠO ĐẮK LẮK TRƯỜNG THPT NGUYỄN HUỆ ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012 - 2013 Thời gian làm bài: 180 phút. Câu I: (2,0 điểm) Cho hàm số y. đứng của đồ thị hàm số 0,25 Bảng biến thi n 1 + ∞ - ∞ 1 - - y y' x - ∞ 1 + ∞ Hàm số nghịch biến trên ( ;1)−∞ và (1; )+∞ Hàm số không có cực trị 0,25 Đồ

Ngày đăng: 19/03/2014, 06:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w