Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
279,85 KB
Nội dung
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 672531, 15 pages doi:10.1155/2012/672531 Research Article Hyers-Ulam-Rassias RNS Approximation of Euler-Lagrange-Type Additive Mappings H Azadi Kenary,1 H Rezaei,1 A Ebadian,2 and A R Zohdi3 Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran Department of Mathematics, Payame Noor University, Tehran, Iran Department of Mathematics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran Correspondence should be addressed to A Ebadian, ebadian.ali@gmail.com Received 24 December 2011; Revised March 2012; Accepted 19 March 2012 Academic Editor: Tadeusz Kaczorek Copyright q 2012 H Azadi Kenary et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited Recently the generalized Hyers-Ulam or Hyers-Ulam-Rassias stability of the following functional equation m m mf m 1≤i≤m,i / j ri xi j f −rj xj i ri f x i i ri xi where r1 , , rm ∈ R, proved ∗ in Banach modules over a unital C -algebra It was shown that if m i ri / 0, ri , rj / for some ≤ i < j ≤ m and a mapping f : X → Y satisfies the above mentioned functional equation then the mapping f : X → Y is Cauchy additive In this paper we prove the Hyers-Ulam-Rassias stability of the above mentioned functional equation in random normed spaces briefly RNS Introduction and Preliminaries The stability problem of functional equations originated from a question of Ulam concerning the stability of group homomorphisms Hyers gave a first affirmative partial answer to the question of Ulam for Banach spaces Hyers’ Theorem was generalized by Aoki for additive mappings and by Rassias for linear mappings by considering an unbounded Cauchy difference The paper of Rassias has provided a lot of influence in the development of what we call the generalized Hyers-Ulam stability of functional equations In 1994, a generalization of y p by a Rassias’ theorem was obtained by G˘avrut¸a by replacing the bound x p general control function ϕ x, y The functional equation: f x y f x−y 2f x 2f y , 1.1 is called a quadratic functional equation In particular, every solution of the quadratic functional equation is said to be a quadratic mapping The generalized Hyers-Ulam stability problem for Mathematical Problems in Engineering the quadratic functional equation was proved by Skof for mappings f : X → Y , where X is a normed space and Y is a Banach space Cholewa noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group Czerwik proved the generalized Hyers-Ulam stability of the quadratic functional equation The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem see 2, 4, 5, 9–28 In the sequel, we will adopt the usual terminology, notions, and conventions of the theory of random normed spaces as in 29 Throughout this paper, the spaces of all probability distribution functions are denoted by Δ Elements of Δ are functions F : R ∪ {−∞, ∞} → 0, , such that F is left continuous and nondecreasing on R, F 0 {F ∈ Δ : l− F ∞ 1}, where l− f x and F ∞ It’s clear that the subset D limt → x− f t , is a subset of Δ The space Δ is partially ordered by the usual point-wise ordering of functions, that is, for all t ∈ R, F ≤ G if and only if F t ≤ G t For every a ≥ 0, Ha t is the element of D defined by Ha t ⎧ ⎨0 if t ≤ a ⎩1 if t > a 1.2 One can easily show that the maximal element for Δ in this order is the distribution function H0 t Definition 1.1 A function T : 0, → 0, is a continuous triangular norm briefly a tnorm if T satisfies the following conditions: i T is commutative and associative; ii T is continuous; iii T x, x for all x ∈ 0, ; iv T x, y ≤ T z, w whenever x ≤ z and y ≤ w for all x, y, z, w ∈ 0, xy, Tmax x, y max{a Three typical examples of continuous t-norms are TP x, y a, b Recall that, if T is a t-norm and {xn } is a given of numbers b − 1, 0}, and TM x, y in 0, , Tin xi is defined recursively by Ti1 x1 and Tin xi T Tin−1 xi , xn for n ≥ Definition 1.2 A random normed space briefly RNS is a triple X, μ , T , where X is a vector space, T is a continuous t-norm, and μ : X → D is a mapping such that the following conditions hold i μx t H0 t for all t > if and only if x ii μαx t iii μx y μx t/|α| for all α ∈ R, α / 0, x ∈ X and t ≥ t s ≥ T μx t , μy s , for all x, y ∈ X and t, s ≥ Definition 1.3 Let X, μ , T be an RNS i A sequence {xn } in X is said to be convergent to x ∈ X in X if for all t > 0, limn → ∞ μxn −x t Mathematical Problems in Engineering ii A sequence {xn } in X is said to be Cauchy sequence in X if for all t > 0, limn → ∞ μxn −xm t iii The RN-space X, μ , T is said to be complete if every Cauchy sequence in X is convergent Theorem 1.4 If X, μ , T is RNS and {xn } is a sequence such that xn → x, then limn → ∞ μxn t μx t In this paper, we investigate the generalized Hyers-Ulam stability of the following additive functional equation of Euler-Lagrange type: m ⎛ ⎞ f ⎝−rj xj j ri xi ⎠ 1≤i≤m, i / j m ri f xi mf i m ri xi , 1.3 i where r1 , , rn ∈ R, m i ri / 0, and ri , rj / for some ≤ i < j ≤ m, in random normed spaces Every solution of the functional equation 1.3 is said to be a generalized Euler-Lagrange type additive mapping RNS Approximation of Functional Equation 1.3 Remark 2.1 Throughout this paper, r1 , , rm will be real numbers such that ri , rj / for fixed ≤ i < j ≤ m Theorem 2.2 Let X be a real linear space, Z, μ , be an RN space, ϕ : X n → Z be a function such that for some < α < 2, μϕ 2x1 , ,2xm t ≥ μαϕ x1 , ,xm t f ∀xi ∈ X, t > 2.1 t 2.2 and for all xi ∈ X and t > lim μ n→∞ ϕ 2n x1 , ,2n xm /2n Let Y, μ, be a complete RN space If f : x → Y is a mapping such that for all xi , xj ∈ X and t > μ m j f −rj xj 1≤i≤m, i / j ri xi m i ri f xi −mf m i ri xi t ≥ μ ϕ x1 , ,xm t 2.3 Mathematical Problems in Engineering then there is a unique generalized Euler-Lagrange-type additive mapping EL : X → Y such that, for all x ∈ X and all t > μEL x −f x t ≥ TM TM μ ϕi,j 2−α t , μ ϕi,j x/2ri ,− x/2rj μ ϕi,j 2−α t 0,− x/2rj x/2ri ,0 , TM μ ϕi,j 2−α t , 2−α t , x/ri , x/rj μ ϕi,j 2−α t , x/ri ,0 μ ϕi,j 2−α t 0,x/rj 2.4 Proof For each ≤ k ≤ m with k / i, j, let xk in 2.3 Then we get the following inequality: μλ xi ,xj t ≥ μ ϕi,j xi ,xj t , 2.5 for all xi , xj ∈ X, where ⎞ ⎛ ⎜ ϕi,j x, y : ϕ⎜ ⎝0, , 0, x , 0, , 0, ⎟ y , 0, , 0⎟ ⎠, ith jth 2.6 for all x, y ∈ X and all ≤ i < j ≤ m, and λ xi , xj f −ri xi Letting xi f ri xi − rj xj − 2f ri xi rj xj rj xj 2ri f xi 2rj f xj 2.7 in 2.5 , we get μf −rj xj −f rj xj for all xj ∈ X Similarly, letting xj μf 2rj f xj t ≥ μ ϕi,j 0,xj t , 2.8 xi ,0 t , 2.9 in 2.5 , we get −ri xi −f ri xi 2ri f xi t ≥ μ ϕi,j for all xi ∈ X It follows from 2.5 , 2.8 , and 2.9 that for all xi , xj ∈ X μλ xi ,xj − f −ri xi −f ri xi ≥ TM μ ϕi,j xi ,xj 2ri f xi − f −rj xj −f rj xj t , μ ϕi,j xi , 2rj f xj t t , μ ϕi,j 0, xj t 2.10 Mathematical Problems in Engineering Replacing xi and xj by x/ri and y/rj in 2.10 , we get that μf −x y f x−y −2f x y ≥ TM μ ϕi,j for all x, y ∈ X Putting y μ2f x −2f −x −2f 2x f x x/ri ,y/rj t f y −f −x −f −y t , μ ϕi,j t , μ ϕi,j x/ri ,0 0,y/rj t 2.11 , x in 2.11 , we get t ≥ TM μ ϕi,j t , μ ϕi,j x/ri , x/rj x/ri ,0 t , μ ϕi,j 0,x/rj t , 2.12 for all x ∈ X Replacing x and y by x/2 and − x/2 in 2.11 , respectively, we get μf x f −x t ≥ TM μ ϕi,j x/2ri ,− x/2rj t , μ ϕi,j t , μ ϕi,j x/2ri ,0 t 0,− x/2rj , 2.13 for all x ∈ X It follows from 2.12 and 2.13 that μf 2x −2f x t μf x f −x f −x t , μ2f ≥ TM TM μ ϕi,j x/2ri ,− x/2rj ≥ TM μf x t 2f x −2f −x −2f 2x /2 TM μ ϕi,j x/ri ,x/rj x −2f −x −2f 2x t , μ ϕi,j t , μ ϕi,j t t , μ ϕi,j x/2ri ,0 x/ri ,0 t , μ ϕi,j 0,x/rj t 0,− x/2rj t , , 2.14 for all x ∈ X So μf 2x /2 −f x t ≥ TM TM μ ϕi,j x/2ri ,− x/2rj μ ϕi,j 0,− x/2rj TM μ ϕi,j x/ri ,x/rj t t , μ ϕi,j x/2ri ,0 t , , 2t , μ ϕi,j x/ri ,0 2t , μ ϕi,j 0,x/rj 2t 2.15 Mathematical Problems in Engineering Replacing x by 2n x in 2.15 and using 2.1 , we get μf 2n x /2n t − f 2n x /2n ≥ TM TM μ ϕi,j T M μ ϕi,j 2n t 2n x/ri , 2n x/rj μ ϕi,j 2n x/ri ,0 2n t , μ ϕi,j 3αn x/2ri ,− x/2rj TM μ ϕi,j , μ ϕi,j 2n t , μ ϕi,j 2n x/2ri ,0 2n t 0,− 2n x/2rj 2n t , , 2n t 0, 2n x/rj ≥ TM TM μ ϕi,j 2n t , μ ϕi,j 2n x/2ri ,− 2n x/2rj 2n t 3αn x/ri ,x/rj , μ ϕi,j x/2ri ,0 2n t , μ ϕi,j 3αn 2n t 3αn x/ri ,0 , μ ϕi,j 2n t 3αn 0,− x/2rj 0,x/rj , 2n t 3αn , 2.16 for all x ∈ X and all n ∈ N Therefore, we have μf n−1 2n x /2n −f x k μ αk t k n−1 n−1 k f ≥ Tkn−10 μ 2k x /2k 2k x − f f 2k x /2k TM TM μ ϕi,j TM μ ϕi,j k − f 2k x /2k ≥ Tkn−10 TM TM μ ϕi,j TM μ ϕi,j /2k αk t 2k x/2ri ,− x/2rj t , μ ϕi,j 2t , μ ϕi,j x/ri ,x/rj x/2ri ,− x/2rj x/ri ,x/rj αk t k x/ri ,0 t , μ ϕi,j 2t , μ ϕi,j t , μ ϕi,j 2t , μ ϕi,j x/2ri ,0 x/ri ,0 x/2ri ,0 0,x/rj t , μ ϕi,j 2t , μ ϕi,j 2t 0,− x/2rj 0,x/rj t 0,− x/2rj 2t t , , , 2.17 Mathematical Problems in Engineering for all x ∈ X This implies that μf t 2n x /2n −f x ≥ TM TM μ ϕi,j μ ϕi,j TM μ ϕi,j μ ϕi,j t x/2ri ,− x/2rj n−1 k t 0,− x/2rj n−1 k n−1 k 3 n−1 k n−1 k αk /2k , 2.18 2t , μ ϕi,j αk /2k 2t 0,x/rj t x/2ri ,0 , αk /2k 2t x/ri ,x/rj , μ ϕi,j αk /2k x/ri ,0 n−1 k , αk /2k αk /2k Replacing x by 2p x in 2.18 , we obtain μf 2n p x /2n ⎛ p − f 2p x /2p t ⎛ ≥ TM ⎝TM ⎝μ ϕi,j ⎛ x/2ri ,− x/2rj ⎝ 0,− x/2rj ⎛ T M ⎝μ ϕi,j ⎝ μ ϕi,j x/ri ,0 p n−1 k p αk /2k p n−1 k p p n−1 k p ⎠, μ ϕi,j x/2ri ,0 ⎞ t ⎝ p n−1 k p αk /2k ⎠, ⎠⎠, ⎞ αk /2k 2t ⎝ ⎛ ⎞⎞ 2t ⎝ ⎛ αk /2k t ⎛ x/ri ,x/rj p n−1 k p ⎛ μ ϕi,j ⎞ t αk /2k ⎠, ⎞ ⎞⎞⎞ ⎛ ⎠μ ϕi,j 0,x/rj 2t ⎝ p n−1 k p αk /2k ⎠⎠⎠ 2.19 Since the right-hand side of the above inequality tends to 1, when p, n → ∞, then ∞ the sequence {f 2k x /2k }n is a Cauchy sequence in complete RN space Y, μ, , so there exists some point EL x ∈ Y such that EL x for all x ∈ X lim n→∞ f 2k x 2k , 2.20 Mathematical Problems in Engineering Fix x ∈ X and put P μf 2n x /2n −f x in 2.19 Then we obtain t ≥ TM TM μ ϕi,j μ ϕi,j 0,− x/2rj TM μ ϕi,j x/ri ,x/rj μ ϕi,j t x/2ri ,− x/2rj n−1 k αk /2k t n−1 k n−1 k αk /2k 2t αk /2k 2t 0,x/rj n−1 k αk /2k , μ ϕi,j t x/2ri ,0 n−1 k , αk /2k , , μ ϕi,j 2t x/ri ,0 n−1 k , αk /2k , 2.21 and so, for every μEL x −f x t > 0, we have ≥ T μEL x − f ≥T 2n x /2n μEL x − f 2n x /2n ,μ f 2n x /2n −f x t , TM TM μ ϕi,j μ ϕi,j μ ϕi,j TM μ ϕi,j μ ϕi,j μ ϕi,j t x/2ri ,− x/2rj n−1 k t x/2ri ,0 n−1 k αk /2k t 0,− x/2rj n−1 k n−1 k 3 αk /2k 2t 0,x/rj n−1 k , αk /2k 2t n−1 k , αk /2k 2t x/ri ,x/rj x/ri ,0 , αk /2k αk /2k , 2.22 Mathematical Problems in Engineering Taking the limit as n → ∞ and using 2.22 , we get μEL x −f t x ≥ TM TM μ ϕi,j 2−α t , μ ϕi,j x/2ri ,− x/2rj μ ϕi,j 2−α t 0,− x/2rj 2−α t , x/2ri ,0 , TM μ ϕi,j μ ϕi,j μ ϕi,j x t ≥ TM TM μ ϕi,j 2−α t , μ ϕi,j x/2ri ,− x/2rj μ ϕi,j TM μ ϕi,j 2−α t 0,− x/2rj x/ri ,x/rj μ ϕi,j 2−α t , x/ri ,0 0,x/rj 2.23 2−α t → in 2.23 , we get Since was arbitrary by taking μEL x −f 2−α t , x/ri ,x/rj 2−α t , , 2−α t , μ ϕi,j 2−α t 0,x/rj x/2ri ,0 x/ri ,0 2.24 2−α t , Replacing xi by 2n xi for all ≤ i ≤ m, in 2.3 , we get for all xi , xj ∈ X and for all t > 0, μ m j f −2n rj xj 1≤i≤m,i / j 2n ri xi m i ri f 2n xi −mf m i 2n ri xi /2n t ≥ μ ϕ 2n x1 , ,2n xm /2n t 2.25 since lim μ n n n n → ∞ ϕ x1 , ,2 xm /2 t 1, 2.26 We conclude that m j ⎛ ⎞ EL⎝−rj xj ri xi ⎠ 1≤i≤m,i / j m i ri EL xi − mEL m i ri xi 2.27 10 Mathematical Problems in Engineering To prove the uniqueness of mapping EL, assume that there exists another mapping 2n EL x and A 2n x 2n A x , A : X → Y which satisfies 2.4 Fix x ∈ X, clearly EL 2n x limn → ∞ μ EL 2n x /2n − A 2n x /2n t , so for all n ∈ N Since μEL x −A x t μ EL 2n x /2n − A 2n x /2n t ≥ μ EL 2n x /2n ≥ TM TM μ ϕi,j 2n x /2n − A 2n x /2n 2n − α t , μ ϕi,j 12αn x/2ri ,− x/2rj 2n − α t 12αn μ ϕi,j 0,− x/2rj T M μ ϕi,j x/ri ,x/rj μ ϕi,j t ,μ f t − f 2n x /2n t 2n − α t , 12αn , 2n − α t , μ ϕi,j 6αn 2n − α t 6αn 0,x/rj x/2ri ,0 t 2n − α t , 6αn x/ri ,0 2.28 Since the right-hand side of the above inequality tends to 1, when n → ∞, therefore, it follows that for all t > 0, μEL x −A x t and so EL x A x This completes the proof Corollary 2.3 Let X be a real linear space, Z, μ , be an RN space, and Y, μ, a complete and satisfying RN space Let < p < 1, z0 ∈ Z and f : X → Y be a mapping with f μ m j f −rj xj 1≤i≤m, i / j ri xi m i ri f m i ri xi xi −mf t ≥μ m k xk p z0 t , 2.29 limn → ∞ f 2n x /2n exists for all x ∈ X and for all xi , xj ∈ X and t > Then the limit EL x defines a unique Euler-Lagrange additive mapping EL : X → Y such that μEL x −f x t ≥ TM TM μ μ TM μ μ x p z0 p 2p ri rj x p z0 − 2p t |ri |p p 2rj ri rj p |ri |p rj p rj − 2p t rj p − 2p t , μ p − 2p t x z0 x p z0 p x p z0 |2ri |p − 2p t , , , μ x p z0 |ri |p − 2p t , , for all x ∈ X and t > Proof Let α 2p and ϕ : X m → Z be defined as ϕ x1 , , xm m k xi p z0 2.30 Mathematical Problems in Engineering 11 Corollary 2.4 Let X be a real linear space, Z, μ , be an RN space, and Y, μ, a complete and satisfying RN space Let z0 ∈ Z and f : X → Y be a mapping with f μ m j f −rj xj 1≤i≤m, i / j ri xi m i ri f xi −mf m i ri xi t ≥ μ δz0 t , 2.31 limn → ∞ f 2n x /2n exists for for all xi ∈ X for all ≤ i ≤ m and all t > Then, the limit C x all x ∈ X and defines a unique Euler-Lagrange additive mapping EL : X → Y such that μEL x −f x t ≥ TM μ δz0 t t , μ δz0 , 2.32 for all x ∈ X and t > and ϕ : X m → Z be defined as ϕ x1 , , xm Proof Let α δz0 Theorem 2.5 Let X be a real linear space, Z, μ , be an RN space, ϕ : X m → Z be a function such that for some < α < 1/2, μ ϕ x1 /2, ,xm /2 t ≥ μ αϕ x1 , ,xm t ∀xi ∈ X, t > 0, 2.33 Let Y, μ, be a f 0 and for all xi ∈ X and t > 0, limn → ∞ μ 2n ϕ x1 /2n , ,xm /2n t complete RN space If f : X → Y is a mapping satisfying 2.3 , then there is a unique generalized Euler-Lagrange-type additive mapping EL : X → Y such that, for all x ∈ X μEL x −f x t ≥ TM TM μ ϕi,j x/ri ,−x/rj μ ϕi,j TM μ ϕi,j 0,− x/rj x/ri ,x/rj μ ϕi,j for all x ∈ X and all t > x/ri ,0 1−2α t , μ ϕi,j 6α 1−2α t 6α x/rj ,0 1−2α t , 6α , 2.34 1−2α t , 3α 1−2α t , μ ϕi,j 3α 0,x/rj 1−2α t 3α , 12 Mathematical Problems in Engineering Proof Replacing x by x/2n μ2n f x/2n −2n f x/2n TM μ ϕi,j t ·6 0,− x/2n rj t , μ ϕi,j ·3 2n t x/2ri ,− x/2rj αn 2n αn 2n αn 2n ·3 2n t x/2ri ,0 αn 2n ·6 t ·3 0,x/2n rj 2n , , ·6 t x/ri ,x/j ·6 t , μ ϕi,j ·3 x/2n ri ,0 , μ ϕi,j t 0,− x/2rj t , 2n · x/2n ri ,0 , 2n x/2n ri ,x/2n rj μ ϕi,j TM μ ϕi,j t , μ ϕi,j 2n · x/2n ri ,− x/2n rj μ ϕi,j ≥ TM TM μ ϕi,j in 2.14 and using 2.33 , we obtain t ≥ TM TM μ ϕi,j , μ ϕi,j t x/ri ,0 αn 2n , μ ϕi,j ·3 t αn 2n 0,x/rj ·3 2.35 So μ2n f n−1 x/2n −f x 2k αk t i ≥ TM TM μ ϕi,j TM μ ϕi,j t , μ ϕi,j x/ri ,− x/rj x/ri ,x/rj t , μ ϕi,j x/ri ,0 t , μ ϕi,j t , μ ϕi,j x/ri ,0 t 0,− x/rj 0,x/rj t 2.36 , , for all x ∈ X This implies that μ2n f x/2n −f x t ≥ TM TM μ ϕi,j x/ri ,− x/rj μ ϕi,j TM μ ϕi,j 0,− x/rj x/ri ,x/rj μ ϕi,j x/ri ,0 t 6α n−1 k , μ ϕi,j 2k αk t 6α n−1 k 3α n−1 k 3α n−1 k 2k αk t 2k αk t 6α n−1 k 2k αk , , 2k αk t x/ri ,0 2.37 , , μ ϕi,j t 0,x/rj 3α n−1 k 2k αk Mathematical Problems in Engineering 13 Proceeding as in the proof of Theorem 2.2, one can easily show that the sequence {2n f x/2n }n∞1 is a Cauchy sequence in complete RN space Y, μ, , so there exists some point EL x ∈ Y such that x , 2n lim 2n f EL x n→∞ 2.38 for all x ∈ X Taking the limit n → ∞ from both sides of the above inequality, we obtain 2.34 The rest of the proof is similar to the proof of Theorem 2.2 Corollary 2.6 Let X be a real linear space, Z, μ , be an RN space and Y, μ, a complete and satisfying RN space Let p > 1, z0 ∈ Z and f : X → Y be a mapping with f μ m j f −rj xj 1≤i≤m, i / j ri xi m i ri f t ≥μ m i ri xi xi −mf m k xi p t , z0 2.39 limn → ∞ 2n f x/2n exists for all for all xi ∈ X for all ≤ i ≤ m and all t > Then the limit EL x x ∈ X and defines a unique Euler-Lagrange additive mapping EL : X → Y such that μEL x −f x t ≥ TM TM μ x z0 μ p 2p ri rj p |ri |p 2rj p p x p z0 μ rj p ri rj 2p − t |ri |p p rj x z0 p p 2p − t x z0 TM μ 2p − t rj p 2p − t , μ p x z0 |2ri |p 2p − t , , , μ x p z0 |ri |p 2p − t , 2.40 , for all x ∈ X and t > Proof Let α m k 2−p and ϕ : X m → Z be defined as ϕ x1 , , xm xi p z0 Corollary 2.7 Let X be a real linear space, Z, μ , be an RN space and Y, μ, a complete and satisfying RN space Let z0 ∈ Z and f : X → Y be a mapping with f μ m j f −rj xj 1≤i≤m, i / j ri xi m i ri f xi −mf m i ri xi t ≥ μδz0 t , 2.41 limn → ∞ 2n f x/2n exists for all x ∈ X and for all xi , xj ∈ X and t > Then, the limit EL x defines a unique Euler-Lagrange additive mapping EL : X → Y such that μEL x −f for all x ∈ X and t > x t ≥ TM μ δz0 4t 2t , μ δz0 3 , 2.42 14 Proof Let α Mathematical Problems in Engineering 1/4 and ϕ : X m → Z be defined as ϕ x1 , , xm δz0 References S M Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964 D H Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol 27, pp 222–224, 1941 T Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol 2, pp 64–66, 1950 T M Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol 72, no 2, pp 297–300, 1978 P G˘avrut¸a, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol 184, no 3, pp 431–436, 1994 F Skof, “Local properties and approximation of operators,” Rendiconti del Seminario Matematico e Fisico di Milano, vol 53, pp 113–129, 1983 P W Cholewa, “Remarks on the stability of functional equations,” Aequationes Mathematicae, vol 27, no 1-2, pp 76–86, 1984 S Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing, River Edge, NJ, USA, 2002 H A Kenary, “Stability of a pexiderial functional equation in random normed spaces,” Rendiconti del Circolo Matematico di Palermo, vol 60, no 1-2, pp 59–68, 2011 10 H A Kenary, “Non-archimedean stability of cauchy-jensen type functional equation,” International Journal of Nonlinear Analysis and Applications, vol 1, no 2, pp 1–10, 2010 11 H A Kenary, “On the stability of a cubic functional equation in random normed spaces,” Journal of Mathematical Extension, vol 4, no 1, pp 105–113, 2009 12 M E Gordji and M B Savadkouhi, “Stability of mixed type cubic and quartic functional equations in random normed spaces,” Journal of Inequalities and Applications, vol 2009, Article ID 527462, pages, 2009 13 M E Gordji, M B Savadkouhi, and C Park, “Quadratic-quartic functional equations in RN-spaces,” Journal of Inequalities and Applications, vol 2009, Article ID 868423, 14 pages, 2009 14 M E Gordji and H Khodaei, Stability of Functional Equations, Lap Lambert Academic Publishing, 2010 15 M E Gordji, S Zolfaghari, J M Rassias, and M B Savadkouhi, “Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces,” Abstract and Applied Analysis, vol 2009, Article ID 417473, 14 pages, 2009 16 H Khodaei and T M Rassias, “Approximately generalized additive functions in several variabels,” International Journal of Nonlinear Analysis and Applications, vol 1, no 1, pp 22–41, 2010 17 C Park, “Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C∗ -algebras,” Journal of Computational and Applied Mathematics, vol 180, no 2, pp 279– 291, 2005 18 C Park, “Fuzzy stability of a functional equation associated with inner product spaces,” Fuzzy Sets and Systems, vol 160, no 11, pp 1632–1642, 2009 19 C Park, “Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras,” Fixed Point Theory and Applications, vol 2007, Article ID 50175, 15 pages, 2007 20 C Park, “Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach,” Fixed Point Theory and Applications, vol 2008, Article ID 493751, pages, 2008 21 T M Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2003 22 T M Rassias, “Problem 16;2, report of the 27th international Symposium on functional equations,” Aequationes Mathematicae, vol 39, no 2-3, pp 292–293, 1990 23 T M Rassias, “On the stability of the quadratic functional equation and its applications,” Studia Universitatis Babes¸-Bolyai, vol 43, no 3, pp 89–124, 1998 24 T M Rassias, “The problem of S M Ulam for approximately multiplicative mappings,” Journal of Mathematical Analysis and Applications, vol 246, no 2, pp 352–378, 2000 25 T M Rassias, “On the stability of functional equations in Banach spaces,” Journal of Mathematical Analysis and Applications, vol 251, no 1, pp 264–284, 2000 Mathematical Problems in Engineering 15 26 R Saadati and C Park, “Non-Archimedean L-fuzzy normed spaces and stability of functional equations,” Computers and Mathematics with Applications, vol 60, no 8, pp 2488–2496, 2010 27 R Saadati, M Vaezpour, and Y J Cho, “A note to paper “On the stability of cubic mappings and quartic mappings in random normed spaces”,” Journal of Inequalities and Applications, vol 2009, Article ID 214530, pages, 2009 28 R Saadati, M M Zohdi, and S M Vaezpour, “Nonlinear L-random stability of an ACQ functional equation,” Journal of Inequalities and Applications, vol 2011, Article ID 194394, 23 pages, 2011 29 B Schweizer and A Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA, 1983 Copyright of Mathematical Problems in Engineering is the property of Hindawi Publishing Corporation and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission However, users may print, download, or email articles for individual use