1. Trang chủ
  2. » Ngoại Ngữ

Actual Occasions As Above, So Below

10 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Nội dung

1 Journal: Geochimica et Cosmochimica Acta 3Supplementary 4other Material for: Evolution of atmospheric xenon and noble gases inferred from Archean to Paleoproterozoic rocks 5G Avice*a,b, B Martya, R Burgessc, A Hofmannd, P Philippote,f, K Zahnleg, D 6Zakharovh *corresponding author's email: gavice@caltech.edu 8a: Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 9UMR 7358, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France 10b: Present address: California Institute of Technology, Department of Geological and Planetary 11Sciences, 1200 East California Boulevard, Pasadena, CA91125, USA 12c: School of Earth and Environmental Sciences, University of Manchester, Oxford Road, 13Manchester M13 9PL, UK 14d: Department of Geology, University of Johannesburg, P.O Box 524, Auckland Park 2006, South 15Africa 16e: Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, UMR 7154, Paris, F1775238, France 18f: Géosciences Montpellier, Université de Montpellier, UMR 5243 CNRS, Place Eugène Bataillon, 1934095 Montpellier, France 20g: NASA Ames Research Center, Moffett Field, CA 94035, USA 21h: Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA 11 22Description of the N2-Ar-Ne Experiment 23 Samples were crushed with the same crushers as those used for Xe-Kr gas extractions 24Crusher volume was directly in contact with a double-walled glass tube system plunged in liquid 25nitrogen in order to condense water and a major part of other reactive gases (except nitrogen, 26T ≈ 100 K) on the walls of the tube After waiting for gas equilibration, the original aliquot was 27divided in two sub-aliquots by closing a valve One aliquot was dedicated to Ne-Ar measurements 28and the other aliquot to N measurement In the first aliquot, Ar was trapped on a charcoal held at 29liquid nitrogen temperature (77 K) ensuring no trapping of Ne Neon was then analyzed on a VG 305400 mass spectrometer After monitoring of CO2+ (m = 44) quantities at the beginning and the end 31of each analysis, some corrections on 22Ne (m = 21.991) were applied for double ionization of CO2++ 32(m = 21.995) following Eqn (S1), for the 20Ne/22Ne ratio for example, 33 34 [Eqn S1] 35 36where CO2+ is the signal of CO2+ in the mass spectrometer during the analysis, [ 20Ne] and [22Ne] are 37the signals detected on the electron multiplier and  is the double ionization ratio (CO 22+/CO2+) with 38a value of 0.5 % determined during the experiment Corrections for 40Ar++ (m = 19.981) were not 39necessary because of an efficient separation of Ar and a sufficient resolution allowing shifting of the 40mass where measurement was done in order to prevent any contribution of 40 Ar++ to the 20 Ne 41(m = 19.992) signal 42 43 During Ne measurement, Ar was released from the charcoal and analyzed in a subsequent 44run Separation and purification of nitrogen were made following the method described in a 45previous study (Zimmermann et al., 2009) It consisted in dissociation and oxidation of all 46impurities into CO2, H2O, SO2 and NOx species with a high partial pressure of oxygen (p O2) 47produced by heating a CuO to 800 °C After oxidation, all oxides except NOx were trapped in a cold 48trap held at -183 °C The pO2 was then reduced by cooling the CuO to 300 °C a temperature 49sufficient for the complete transition from NO x to N2 N2 was then introduced in the mass 50spectrometer Results were corrected for CO + and HC+ contribution following the method described 51by Hashizume and Marty (2004) 52 53 54 22 55 56References 57 58Basford J R., Dragon J C and Pepin R O (1973) Krypton and xenon in lunar fines Nature 59Busemann H., Baur H and Wieler R (2000) Primordial noble gases in “phase Q” in carbonaceous 60 and ordinary chondrites studied by closed‐system stepped etching Meteorit Planet Sci 35, 949– 61 973 62Hashizume K and Marty B (2004) Nitrogen Isotopic Analyses at the Sub-Picomole Level Using an 63 Ultralow Blank Laser Extraction Technique In Handbook of Stable Isotope Analytical 64 Techniques (ed P A de Groot) Handbook of Stable Isotope Analytical Techniques Elsevier, 65 Amsterdam pp 361–374 66Meshik A., Hohenberg C., Pravdivtseva O and Burnett D (2014) Heavy noble gases in solar wind 67 delivered by Genesis mission Geochimica et Cosmochimica Acta 127, 326–347 68Pepin R O (1991) On the origin and early evolution of terrestrial planet atmospheres and 69 meteoritic volatiles Icarus 92, 2–79 70Porcelli D and Ballentine C J (2002) An overview of noble gas geochemistry and cosmochemistry 71 eds D Porcelli, C J Ballentine, and R Wieler RiMG 47, 1–19 72Zimmermann L., Burnard P., Marty B and Gaboriaud F (2009) Laser Ablation (193 nm), 73 Purification and Determination of Very Low Concentrations of Solar Wind Nitrogen Implanted 74 in Targets from the GENESIS Spacecraft Geostandards and Geoanalytical Research 33, 183– 75 194 76 Quetico (≈2.5 Ga) Fractionation: 3.8 ± 2.5 ‰.amu MSWD = 0.42 80 -1 60 δ iXeair (‰) 40 20 −20 −40 124 126 128 129 130 131 132 77 78Figure S1: Isotopic spectrum of xenon released during crushing experiment on quartz samples from the 79Quetico Belt (error bars and range at 1σ) Isotopic ratios ( 124-131Xe/130Xe) are expressed with the delta notation 33 80and normalized to 130Xe and to the isotopic composition of the modern atmosphere Carnaiba (1.9 - 2.0 Ga) 80 Fractionation: 1.8 ± 2.2 ‰.amu MSWD = 1.12 -1 δ iXeair (‰) 60 40 20 −20 124 126 128 129 130 131 132 81 82Figure S2: Isotopic spectrum of xenon released during crushing experiment on quartz samples from Carnaíba 83(error bars and range at 1σ) Isotopic ratios ( 124-131Xe/130Xe) are expressed with the delta notation and 84normalized to 130Xe and to the isotopic composition of the modern atmosphere 85 86Figure S3: Fission spectrum for xenon in Vetreny belt samples once corrected for isotopic fractionation 87(errors at 1σ) The fission spectrum is compatible with the spontaneous fission of 88238U and 244Pu are from (Porcelli and Ballentine, 2002) 89 90 91 92 44 238 U Fission spectra for 93 94Figure S3: Fission spectrum for xenon in Isua samples once corrected for isotopic fractionation (errors at 951σ) Except for some 131 Xe excess, the fission spectrum is compatible with the spontaneous fission of 238 U 96Fission spectra for 238U and 244Pu are from (Porcelli and Ballentine, 2002) 97 98 99Figure S4: Fission spectrum for xenon in Gaoua samples once corrected for isotopic fractionation (errors at 1001σ) Uncertainties are too large to decipher between spontaneous fission of 101from Porcelli and Ballentine (2002) 102 103 104 105 55 238 U or 244 Pu Fission spectra are 106 107Figure S5: Fission spectra of Xe extracted from Fortescue Group samples once corrected for the mass108fractionation relative to U-Xe computed with 124 Xe (green dots) or without (red dots) 124 Xe When 124 Xe is 109used to compute the isotopic fractionation, the fission spectrum does not correspond neither to spontaneous 110fission of 238 U nor to spontaneous fission of 244 Pu Fission spectra are from (Porcelli and Ballentine, 2002) 111Errors at 1σ 112 113Figure S6: Three-isotope plot of Xe demonstrating that ancient atmospheric xenon trapped in Fortescue 114Group quartz samples can only be reproduced by mass-related isotopic fractionation (black plain line) of a 115starting isotopic composition similar to U-Xe (purple square) followed by the addition of xenon from the 116fission of 238U (brown line) Mass-dependent isotope fractionation (dashed and dotted lines) of SW-Xe (Solar 117Xe, blue square) and of Q-Xe (chondritic Xe, green square) cannot lead to the isotopic compositions of 118Fortescue Group or of the modern atmosphere Error bars at 1σ 119 66 120 Caramal (1.6-1.7 Ga) 60 Max fractionation: 0.32 ± 0.78 ‰.u MSWD = 0.89 -1 40 δ iXeair (‰) 20 −20 −40 124 126 128 129 130 131 132 134 136 121 122Figure S7: Isotopic spectrum of xenon released during crushing experiment on quartz samples from Caramal 123(error bars and range at 1σ) Isotopic ratios ( 124-136Xe/130Xe) are expressed with the delta notation and 124normalized to 130Xe and to the isotopic composition of the modern atmosphere (δXeair=0 ‰) Avranches (≈500 Ma) 80 Max fractionation: 1.5 ± 1.6 ‰.u MSWD = 0.12 -1 δ iXeair (‰) 60 40 20 −20 124 126 128 129 130 131 132 134 136 125 126Figure S8: Isotopic spectrum of xenon released during crushing experiment on the quartz sample from 127Avranches (error bars and range at 1σ) Isotopic ratios ( 124-136Xe/130Xe) are expressed with the delta notation 128and normalized to 130Xe and to the isotopic composition of the modern atmosphere (δXeair=0 ‰) 129 77 130 131 132Figure S9: Isotopic spectrum of xenon released during crushing experiment on the sample from Rhynie chert 133(error bars and range at 1σ) Isotopic ratios (124-136Xe/130Xe) are expressed with the delta notation and 134normalized to 130Xe and to the isotopic composition of the modern atmosphere (δXeair=0 ‰) 88 135Table S1: Abundances and isotopic ratios of Xe released during crushing experiments on samples (Table 1) 136analyzed during this study The mean isotopic ratios for Barberton Xe are indicated in the first line Mean 137values for the isotopic ratios are in bold together with their respective Mean Standard Weighted Deviation 138values Isotopic ratios for the atmosphere and cosmochemical components are from (Basford et al., 1973; 139Pepin, 1991; Busemann et al., 2000; Meshik et al., 2014) Errors at 2σ 130 Samples (x10 -17 Xe -1 mol.g ) ± 1.72 2.05 18.27 12.45 2.69 6.11 3.74 1.66 9.07 0.07 0.05 0.17 0.13 0.03 0.14 0.09 0.05 0.12 Average MSWD* Isua (Greenland) BM0406-DE BM0406-A BM0406-BC 2.18 1.28 1.59 0.03 0.03 0.04 Average MSWD* Quetico Belt (Canada) QTBM-01-A QTBM-01-B BGBBM2 0.30 3.30 1.69 0.01 0.09 0.05 Average MSWD* Vetreny Belt (Russia) VB-8A-800°C VB-8A-1700°C VB-8A-1700°C bis Average MSWD* Gaoua (West Africa) DF087-B DF087-A DF087-C DF086-A DF088 A DF087D DF085-A 126 Xe 128 Xe 129 Xe 131 Xe 132 Xe 130 Barberton (South Africa) see Avice et al (2017) FortescueGp (Australia) Pi03-17 A Pi03-17 B Pi03-44 A Pi03-44 B Pi03-17 C Pi03-44 C Pi03-44 C2 Pi03-44 C3 Pi03-44 D 124 134 Xe 136 Xe Xe Xe = 0.0245 0.0002 0.0228 0.0002 0.4847 0.0023 6.537 0.017 5.135 0.013 6.448 0.014 2.476 0.007 2.081 0.006 0.0250 0.0240 0.0244 0.0242 0.0238 0.0246 0.0244 0.0224 0.0242 6.49 6.45 6.58 6.57 6.55 6.46 6.46 6.40 6.55 0.18 0.09 0.05 0.05 0.06 0.10 0.11 0.17 0.05 5.19 5.10 5.14 5.17 5.17 5.06 5.08 5.05 5.15 0.14 0.07 0.03 0.04 0.05 0.08 0.09 0.13 0.04 6.52 6.45 6.48 6.50 6.49 6.42 6.38 6.34 6.48 0.16 0.08 0.04 0.05 0.05 0.09 0.10 0.14 0.04 2.56 2.52 2.52 2.54 2.56 2.50 2.47 2.45 2.52 0.08 0.03 0.02 0.02 0.02 0.04 0.05 0.07 0.02 2.18 2.16 2.15 2.15 2.18 2.11 2.12 2.06 2.13 0.07 0.03 0.01 0.02 0.02 0.04 0.04 0.06 0.02 0.0242 0.0003 0.0227 0.0004 0.4846 0.0025 0.64 2.3 0.71 6.541 1.9 0.038 5.143 1.7 0.026 6.474 1.4 0.026 2.528 2.7 0.017 2.148 3.5 0.018 0.0242 0.0235 0.0240 6.55 6.55 6.53 0.07 0.12 0.08 5.21 5.21 5.19 0.05 0.10 0.08 6.618 6.557 6.566 0.056 0.103 0.076 2.600 2.621 2.609 0.028 0.049 0.039 2.233 2.256 2.243 0.023 0.041 0.033 0.02406 0.0007 0.02252 0.0006 0.4779 0.0048 0.25 0.016 0.3 6.543 0.091 0.047 5.205 0.12 0.037 6.593 0.89 0.041 2.606 0.28 0.02 2.24 0.5 0.017 0.0236 0.0235 0.0239 0.0178 0.0120 0.0113 6.57 6.47 6.31 0.20 0.14 0.12 5.27 5.31 5.26 0.16 0.11 0.09 7.04 7.47 6.90 0.16 0.12 0.10 3.16 3.85 3.19 0.09 0.12 0.07 2.89 3.76 2.95 0.09 0.14 0.07 0.0237 0.0009 0.0225 0.0029 0.4775 0.0073 0.057 0.77 6.41 3.1 0.32 5.28 0.29 0.06 - - - - - - 0.0020 0.0012 0.0006 0.0006 0.0008 0.0015 0.0019 0.0021 0.0005 0.0008 0.0018 0.0016 0.0020 0.0015 0.0016 0.0225 0.0225 0.0230 0.0228 0.0219 0.0228 0.0223 0.0203 0.0228 0.0017 0.0010 0.0004 0.0007 0.0008 0.0010 0.0011 0.0014 0.0005 0.0225 0.0007 0.0224 0.0015 0.0226 0.0015 0.0221 0.0015 0.0217 0.0012 0.0239 0.0014 0.4736 0.4789 0.4854 0.4867 0.4880 0.4830 0.4793 0.4789 0.4827 0.4790 0.4734 0.4771 0.4768 0.4723 0.4825 0.0202 0.0092 0.0048 0.0052 0.0069 0.0134 0.0155 0.0199 0.0060 0.0061 0.0135 0.0102 27.23 16.21 2.41 1.12 0.02422 0.0012 0.02273 0.30 0.02428 0.0009 0.023 0.07 0.02344 0.002 0.02335 0.0242 0.0006 0.0229 0.31 0.15 0.0011 0.0011 0.0022 0.0007 0.47984 0.47543 0.4715 0.4767 0.53 0.0091 0.0105 0.0143 0.0061 6.54 6.50 6.45 6.51 0.45 0.08 0.12 0.15 0.06 5.19 5.17 5.13 5.17 0.32 0.07 0.09 0.13 0.05 6.58 6.54 6.51 6.55 0.62 0.08 0.08 0.14 0.05 2.57 2.54 2.56 2.56 0.30 0.04 0.05 0.07 0.03 2.18 2.17 2.14 2.17 0.78 0.04 0.05 0.06 0.03 1.09 1.11 0.53 0.48 0.50 0.55 1.06 0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.0016 0.0024 0.0016 0.0025 0.0021 0.0023 0.0014 0.4826 0.4749 0.4738 0.4775 0.4725 0.4884 0.4772 0.0155 0.0136 0.0139 0.0169 0.0202 0.0205 0.0122 6.62 6.51 6.52 6.53 6.51 6.58 6.48 0.13 0.13 0.13 0.17 0.16 0.19 0.10 5.24 5.23 5.25 5.27 5.20 5.33 5.19 0.11 0.11 0.11 0.14 0.14 0.15 0.08 6.72 6.65 6.66 6.68 6.57 6.81 6.64 0.12 0.12 0.12 0.15 0.14 0.17 0.09 2.64 2.59 2.67 2.64 2.57 2.72 2.56 0.05 0.06 0.06 0.07 0.07 0.08 0.04 2.26 2.23 2.31 2.26 2.20 2.35 2.25 0.05 0.05 0.05 0.06 0.06 0.07 0.03 0.0235 0.0008 0.0220 0.0010 0.4775 0.0057 0.81 1.4 0.37 6.53 0.6 0.05 5.23 0.57 0.04 6.67 0.95 0.05 2.62 3.4 0.05 2.26 2.6 0.04 0.0237 0.0011 0.0226 0.0014 0.4718 0.0107 0.0227 0.0016 0.0232 0.0018 0.4813 0.0161 0.02339 0.0009 0.0228 0.0011 0.4747 0.0087 6.57 6.46 6.537 0.11 0.17 0.092 5.26 5.23 5.255 0.09 0.14 0.074 6.92 6.84 - 0.10 0.17 - 2.97 2.92 - 0.05 0.08 - 2.67 2.64 - 0.05 0.07 - Average MSWD* 0.0242 0.0240 0.0235 0.0248 0.0217 0.0225 0.0235 0.0021 0.0021 0.0018 0.0025 0.0022 0.0028 0.0016 0.0218 0.0247 0.0212 0.0224 0.0223 0.0227 0.0212 Carnaiba (Brasil) G2Ga-A G2Ga-B Average 0.60 1.33 0.01 0.07 Caramal (Australia) QAnt-1 QAnt-2 Average 2.63 1.58 0.06 0.02412 0.0016 0.02108 0.0014 0.47608 0.0109 6.4833 0.0915 5.1623 0.0795 6.5569 0.0812 2.5449 0.0398 2.18 0.0332 0.04 0.02358 0.0019 0.02151 0.0019 0.48435 0.0135 6.5076 0.1156 5.2439 0.0979 6.6361 0.1052 2.5676 0.0504 2.19 0.0441 0.02391 0.0012 0.02128 0.0011 0.47958 0.0087 6.4888 0.0724 5.1957 0.0617 6.5876 0.0651 2.5534 0.0313 2.1845 0.0264 Avranches (France) GM-B 1.33 0.04 0.0239 0.0016 0.0223 0.0019 0.470 0.015 6.45 0.15 5.19 0.12 6.56 0.13 2.54 0.06 2.15 0.05 Rhynie(Scotland) R115B-A 0.51 0.01 0.0253 0.0031 0.0231 0.0022 0.477 0.023 6.55 0.18 5.17 0.15 6.66 0.16 2.58 0.08 2.19 0.07 Modern quartz (0-35 Ma) G35-A (Colombie) LG3-A (Alpes, France) K1-A (Rhine graben, France) 2.10 0.84 15.46 0.04 0.06 0.46 0.0238 0.0227 0.0233 0.0010 0.0026 0.0011 0.0218 0.0009 0.0233 0.0025 0.0220 0.0010 0.4743 0.4679 0.4687 0.0086 0.0469 0.0203 6.52 6.45 6.49 0.08 0.61 0.26 5.22 5.17 5.21 0.07 0.49 0.21 6.60 6.85 6.61 0.07 0.47 0.19 2.55 3.09 2.57 0.03 0.28 0.10 2.20 2.92 2.18 0.03 0.26 0.09 Average 0.0235 0.0007 0.0220 0.0006 0.4733 0.0077 6.516 0.074 5.21 0.06 - - - - - - Aira b Q-Xe c SW-Xe U-Xed 0.0234 0.0281 0.0298 0.0293 6.496 6.436 6.306 6.286 0.019 0.034 0.033 0.006 5.213 5.056 5.004 4.996 0.017 0.022 0.028 0.006 6.607 6.177 6.061 6.047 0.010 0.023 0.029 0.006 2.563 2.335 2.237 2.126 0.009 0.016 0.014 0.004 2.176 1.954 1.819 1.657 0.006 0.014 0.011 0.003 0.0001 0.0003 0.0009 0.0001 0.0218 0.0251 0.0252 0.0253 0.0002 0.0002 0.0011 0.0001 0.4715 0.5077 0.5103 0.5083 0.0014 0.0031 0.0044 0.0006 Fortescue Gp samples are labeled Pi03-17 XY and Pi03-44 XY with X the 1-3 mm granulometric sub fraction and Y the crushing step Basford et al (1973) Busemann et al (2000) c Meshik et al (2014) d Pepin (1991) *MSWD (for Mean Standard Weighted Deviation) a b 140 99 141Table S2: Isotopic composition of krypton (normalized to 84Kr) released during crushing experiments on 142quartz samples from the Barberton greenstone belt Locations of samples in the BARB3 core are indicated 143Errors at 2σ Samples Location (m) 78 Kr ± 80 Kr 82 ± Kr 84 Barberton BMGA3-13-G 555 BMGA3-13 B BMGA3-13 C BMGA3-13 D BMGA3-13 E 0.0396 0.0004 83 Kr ± 86 Kr ± Kr=1 0.2021 0.0018 0.2013 0.0016 0.3074 0.0017 555 - 0.2031 0.2020 0.2031 0.2022 0.0015 0.0017 0.0015 0.0009 0.2021 0.2019 0.2021 0.2012 0.0013 0.0016 0.0013 0.0007 0.3056 0.3020 0.3056 0.3059 0.0025 0.0027 0.0025 0.0028 BMGA3-4 A BMGA3-4 B BMGA3-4 B2 BMGA3-4 C 715 - 0.1992 0.2019 0.2021 0.2023 0.0021 0.0020 0.0091 0.0078 0.1979 0.2018 0.1995 0.2016 0.0024 0.0015 0.0083 0.0016 0.3015 0.3042 0.3034 0.3042 0.0041 0.0024 0.0132 0.0035 BMGA3-5 A BMGA3-5 B BMGA3-5 C 784 - 0.2017 0.2012 0.2024 0.0025 0.0063 0.0018 0.2015 0.2015 0.2021 0.0025 0.0055 0.0013 0.3028 0.3058 0.3044 0.0032 0.0105 0.0030 Average MSWD* VB-8A 800 C VB-8A 1700 C VB-8A 1700 C Average 144 ± 0.20217 0.0005 0.20151 0.00042 0.30499 0.00082 1.05 1.2 1.7 0.0061 0.0061 0.0061 0.0061 0.0002 0.0002 0.0003 0.0002 0.0397 0.0397 0.0397 0.0397 Barberton samples are labeled BMGA3-XX-YZ with XX the core samples, Y the 1-3 mm granulometric sub fraction and Z the crushing step *MSWD (for Mean Standard Weighted Deviation) 1010 0.0005 0.0006 0.0006 0.0004 0.202 0.203 0.201 0.202 0.002 0.002 0.002 0.001 0.201 0.202 0.202 0.201 0.002 0.002 0.003 0.002 0.306 0.305 0.305 0.306 0.003 0.003 0.004 0.002 ... sufficient resolution allowing shifting of the 40mass where measurement was done in order to prevent any contribution of 40 Ar++ to the 20 Ne 41(m = 19.992) signal 42 43 During Ne measurement, Ar was released... reactive gases (except nitrogen, 26T ≈ 100 K) on the walls of the tube After waiting for gas equilibration, the original aliquot was 27divided in two sub-aliquots by closing a valve One aliquot was... Ne-Ar measurements 28and the other aliquot to N measurement In the first aliquot, Ar was trapped on a charcoal held at 29liquid nitrogen temperature (77 K) ensuring no trapping of Ne Neon was then

Ngày đăng: 02/11/2022, 00:35

w