1. Trang chủ
  2. » Giáo Dục - Đào Tạo

DỰ án cá NHÂN môn PHÂN TÍCH KINH DOANH CAO học

36 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 694,45 KB

Nội dung

TRƯỜNG ĐẠI HỌC KINH TẾ TP.HCM KHOA KINH DOANH QUỐC TẾ - MARKETING DỰ ÁN CÁ NHÂN MƠN PHÂN TÍCH KINH DOANH CAO HỌC Học Viên: Huỳnh Kim Thanh Tuyền Lớp: Kinh doanh thương mại - Khóa: 30.2 Môn học: Phân tích kinh doanh Giảng viên: Nguyễn Thị Hồng Thu Hồ Chí Minh, ngày 15 tháng 07 năm 2021 TRƯỜNG ĐẠI HỌC KINH TẾ TP.HCM KHOA KINH DOANH QUỐC TẾ - MARKETING DỰ ÁN CÁ NHÂN MƠN PHÂN TÍCH KINH DOANH CAO HỌC NĂM 2021 CAM KẾT Dự án cá nhân tơi xây dựng, xử lý không chép từ viết tổ chức cá nhân khác (This report has been written by me and has not received any previous academic credit at this or any other institution) TRƯỜNG ĐẠI HỌC KINH TẾ TP.HCM KHOA KINH DOANH QUỐC TẾ - MARKETING ĐÁNH GIÁ CỦA GIẢNG VIÊN HƯỚNG DẪN TÓM LƯỢC Lời đầu tiên em xin chân thành cảm ơn cô Nguyễn Thị Hồng Thu, Giáo viên bộ mơn Phân tích Kinh doanh đã tận tình chỉ dạy chúng em những kiến thức bổ trợ cho môn học Mong rằng những kiến thức cô truyền đạt em không chỉ vận dụng tập mà còn cơng việc hiện tại mình Nợi dung Dự án Cá nhân gờm ba phần: PHẦN 1: LẬP TRÌNH TUYẾN TÍNH VÀ BÀI TỐN PHÂN TÍCH KINH DOANH Trong phần thông qua Excel Solver giúp công ty tìm được số lượng sản phẩm cung cấp cho bốn khách hàng tiềm mình với mục đích tới đa hóa lợi nḥn PHẦN 2: PHÂN TÍCH RA QUYẾT ĐỊNH VÀ BÀI TỐN PHÂN TÍCH KINH DOANH Giúp bạn Văn định đúng tham gia trò chơi trường đạt phần thưởng cao trò chơi đó PHẦN 3: DỰ BÁO VÀ PHÂN TÍCH KINH DOANH Dự báo sớ tiền qun góp Quỹ Vaccine tại Hoa Kỳ bằng ba mô hình Last-Value Forecasting Method; Averaging Forecasting Method, Moving-Average Forecasting Method MỤC LỤC NỢI DUNG CHÍNH PHẦN 1: LẬP TRÌNH TUYẾN TÍNH VÀ BÀI TỐN PHÂN TÍCH KINH DOANH I Mở đầu: Bối cảnh tình (1-3 trang) II Ứng dụng thực tiễn 10 Giới thiệu mơ hình lập trình tuyến tính ứng dụng tình huống mà bạn xây dựng 10 Xác định vấn đề .10 Thiết lập mơ hình đại sớ tuyến tính cho tình huống .10 Xây dựng mơ hình lập trình tuyến tính Excel Solver QM for Windows 12 Trình bày giải thích kết quả/ giải pháp tới ưu mô hình từ Excel Solver QM for Windows 12 Phân tích đợ nhạy- Nếu thì (What- If Analysis) Excel Solver QM for Windows, xác định vùng giá trị min-max (range) các biến hàm mục tiêu không làm thay đổi giải pháp tối ưu (optimal solution) khi: biến hàm mục tiêu thay đổi III Kết luận PHẦN 2: PHÂN TÍCH RA QUYẾT ĐỊNH VÀ BÀI TỐN PHÂN TÍCH KINH DOANH I Mở đầu: Bối cảnh tình (1-3 trang) Ứng dụng thực tiễn (6-12 trang) II Giới thiệu mơ hình phân tích định ứng Thiết lập bảng “thu hồi” (Payoff Table) 2.1 Trả lời câu hỏi số 2.2 Trả lời câu hỏi số Áp dụng quy luật định Bayes để giải toán định, xây dựng Decision Tree QM for Windows giải thích kết quả thu được bên dưới: 4.Xác định giá trị thơng tin hồn hảo: III Kết luận PHẦN 3: DỰ BÁO VÀ PHÂN TÍCH KINH DOANH I Mở đầu (Introduction): II.Cơ sở lý luận: Giới thiệu mơ tả mơ hình dự báo: 2.1 Mơ hình Last-Value Forecasting Method: 2.2 Mơ hình Averaging Forecasting Method: 2.3 Mơ hình Moving-Average Forecasting Method: 21 Tính chỉ sớ mean absolute deviation (called MAD) mean square error (often abbreviated MSE) để đo lường sai số dự báo .21 III Ứng dụng thực tiễn: 22 Áp dụng mơ hình dự báo vào tình đã xây dựng: .22 Tính số mean absolute deviation (called MAD) mean square error (often abbreviated MSE) để đo lường sai số dự báo tình đã xây dựng: 23 2.1 Mơ hình Last-Value Forecasting Method: .23 2.2 Mơ hình Averaging Forecasting Method: 24 2.3 Mơ hình Moving-Average Forecasting Method: 25 Áp dụng mơ hình dự báo áp dụng vào tình đã xây dựng để dự báo có tính đến yếu tố thời vụ .25 3.1 Mơ hình Last-Value Forecasting Method tính đến yếu tố thời vụ: 26 3.2 Mơ hình Averaging Forecasting Method tính đến yếu tố thời vụ: .30 3.3 Mơ hình Moving-Average Forecasting Method tính đến yếu tố thời vụ: .30 3.4 Tính số mean absolute deviation (called MAD) mean square error (often abbreviated MSE) để đo lường sai số dự báo tình mà bạn xây dựng có tính đến yếu tố thời vụ 31 3.5 IV Chọn mơ hình dự báo tốt lý giải tại 32 Kết luận 32 TÀI LIỆU THAM KHẢO 33 MỤC LỤC BẢNG, SƠ ĐỒ VÀ HÌNH Bang Lơi nhuân đơn vi cho môi sư kêt hơp .9 Bang Lưa chọn tra lời Q4 có gọi bạn be 15 Bang Lưa chọn tra lời Q4 không gọi bạn be 15 Bang Lưa chọn tra lời Q5 có gọi bạn be 15 Bang Lưa chọn tra lời Q5 không gọi bạn be 16 Bang Tra lời Q4 có gọi bạn be hoăc vê vơi 2.500.000 VNĐ 18 Bang Tra lời Q4 không gọi bạn be hoăc vê vơi 2.500.000 VNĐ 19 Bang Tra lời Q5 có gọi bạn be hoăc vê vơi 5.000.000 VNĐ 19 Bang Tra lời Q5 không gọi bạn be hoăc vê vơi 5.000.000 VNĐ 19 Bang 10 Các khoan quyên góp từ 2019-2021 21 Sơ đô Giơi thiêu mô hinh phân tch 14 Hinh Kêt qua Excel Solver Hinh Kêt qua QM for Windows Hinh Phân tch đô nhạy Excel Solver Hinh Decision Tree, kêt qua sau chạy QM for Windows Hinh Dư báo các khoan quyên góp cho quỹ Vaccine tại Hoa Ky Hinh Dư báo các khoan quyên góp theo mô hinh Last-Value Forecasting Method Hinh Dư báo các khoan quyên góp theo mô hinh Averaging Forecasting Method Hinh Dư báo các khoan quyên góp theo mô hinh Moving-Average Forecasting Method Hinh Mô hinh Last-Value Forecasting Method tnh đên yêu tố thời vụ Hinh 10 Mô hinh Averaging Forecasting Method tnh đên yêu tố thời vụ Hinh 11 Mô hinh Moving-Average Forecasting Method tnh đên yêu tố thời vụ 12 12 13 16 22 23 24 25 26 30 31 NỢI DUNG CHÍNH PHẦN 1: LẬP TRÌNH TUYẾN TÍNH VÀ BÀI TỐN PHÂN TÍCH KINH DOANH I Mở đầu: Bối cảnh tình (1-3 trang) Cơng ty Tiffan mới thành lập sáng tạo một sản phẩm được tung thị trường, sản phẩm được sản xuất bởi nhà máy Sản phẩm tốt nên họ nhận được yêu cầu đặt hàng vượt quá lực sản xuất công ty Trong tháng sau, công ty có khách hàng tiềm cần mua hàng Khách hàng khách hàng tiềm cơng ty, tồn bợ đơn hàng sẽ được đáp ứng Khách hàng cũng những khách hàng có giá trị nên sẽ được đáp ứng tối thiểu 1/3 đơn hàng Khách hàng 4, không thật sự tiềm nên công ty không đảm bảo bất kỳ giá trị tối thiểu cho đơn hàng Sẽ có đủ đơn vị được sản xuất để vượt quá số lượng tối thiểu Do có sự thay đổi đáng kể chi phí vận chuyển, lợi nhuận ròng thu được đơn vị bán được khác nhau, tùy thuộc vào nhà máy cung cấp cho khách hàng Do đó, định cuối sẽ dựa việc tối đa hóa lợi nhuận Lợi nhuận đơn vị cho sự kết hợp một nhà máy cung cấp cho một khách hàng được thể hiện Bảng Cợt ngồi bên phải cho biết sớ lượng đơn vị mà nhà máy sẽ sản xuất tháng tới (tổng cộng 22.000) Hàng dưới hiển thị số lượng đặt hàng mà khách hàng yêu cầu (tổng cộng 31.000) Hàng đến cuối cung cấp số lượng tối thiểu sẽ được cung cấp (tổng cộng 14.000), dựa các định công ty Công ty cần xác định có đơn vị để bán cho khách hàng (quan sát những số tiền tối thiểu này) đơn vị cần vận chuyển từ nhà máy đến khách hàng để tối đa hóa lợi nhuận Khách hàng Nhà máy Đơn hàng tối thiếu Đơn hàng đặt Bảng Lợi nhuận đơn vị cho mỗi kết hợp II Ứng dụng thực tiễn Giới thiệu mơ hình lập trình tuyến tính ứng dụng tình huống mà bạn xây dựng Tổng số lượng sản phẩm Nhà máy 1, 2, cung cấp cho Khách hàng 1, 2, 3, tương ứng với Số lượng mà Nhà máy 1, 2, sản xuất Số lượng sản phẩm nhà máy cung cấp cho Khách hàng 1, 2, 3, >= Số lượng sản phẩm tối thiểu phải cung cấp cho Khách hàng 1, 2, 3, Số lượng sản phẩm nhà máy cung cấp cho Khách hàng 1, 2, 3,

Ngày đăng: 29/10/2022, 08:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w