1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử đại học môn toán năm 2013 - THPT Lý Thường Kiệt - Hải Phòng - Đề số 68 ppt

2 72 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 20,72 KB

Nội dung

Đề số 68 Câu1: (2,5 điểm) Cho hàm số: y = 1 1 2 + −−+ x mmxx (C m ) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = -1. 2) Chứng minh rằng họ (C m ) luôn đi qua một điểm cố định. 3) Tìm m để hàm số (C m ) có cực trị. Xác định tập hợp các điểm cực trị. Câu2: (3 điểm) 1) Giải phương trình: 1 20002000 =+ xcosxsin 2) Giải bất phương trình: 220001 <+ x log 3) Chứng minh bất đẳng thức: 4 1 2 1 2 1 0 2000 π ≤ − ≤ ∫ x dx Câu3: (2 điểm) Trong không gian Oxyz cho bốn điểm A(-4; 4; 0), B(2; 0; 4), C(1; 2; -1) và D(7, -2, 3). 1) Chứng minh rằng bốn điểm A, B, C, D nằm trên cùng một mặt phẳng. 2) Tính khoảng cách từ điểm C đến đường thẳng AB. 3) Tìm trên đường thẳng AB điểm M sao cho tổng MC + MD là nhỏ nhất. Câu4: (1 điểm) Tính tích phân: I = ∫ π π − + − 4 4 dx xcosxsin xcosxsin Bà i5: (1,5 điểm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Một tổ học sinh có 5 nam và 5 nữ xếp thành một hàng dọc. 1) Có bao nhiêu cách xếp khác nhau? 2) Có bao nhiêu cách xếp sao cho không có học sinh cùng giới tính đứng kề nhau? 1 2 3 4 5 . Đề số 68 Câu1: (2,5 điểm) Cho hàm số: y = 1 1 2 + −−+ x mmxx (C m ) 1) Khảo sát sự biến thi n và vẽ đồ thị của hàm số khi m = -1 . 2) Chứng. Câu3: (2 điểm) Trong không gian Oxyz cho bốn điểm A (-4 ; 4; 0), B(2; 0; 4), C(1; 2; -1 ) và D(7, -2 , 3). 1) Chứng minh rằng bốn điểm A, B, C, D nằm trên

Ngày đăng: 16/03/2014, 04:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w