1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyen de hay ve so chinh phuong

32 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 765,5 KB

Nội dung

Chuyên đề SỐ CHÍNH PHƯƠNG I ĐỊNH NGHĨA: Số phương số bình phương số ngun II TÍNH CHẤT: Số phương có chữ số tận 0, 1, 4, 5, 6, ; khơng thể có chữ số tận 2, 3, 7, Khi phân tích thừa số nguyên tố, số phương chứa thừa số nguyên tố với số mũ chẵn Số phương có hai dạng 4n 4n + Khơng có số phương có dạng 4n + 4n + (n ∈ N) Số phương có hai dạng 3n 3n + Khơng có số phương có dạng 3n + (n ∈ N) Số phương tận chữ số hàng chục chữ số chẵn Số phương tận chữ số hàng chục Số phương tận chữ số hàng chục chữ số chẵn Số phương tận chữ số hàng chục chữ số lẻ Số phương chia hết cho chia hết cho Số phương chia hết cho chia hết cho Số phương chia hết cho chia hết cho 25 Số phương chia hết cho chia hết cho 16 III MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG A DẠNG1: CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG Bài 1: Chứng minh với số nguyên x, y A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 số phương Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4 Đặt x2 + 5xy + 5y2 = t ( t ∈ Z) A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2 V ì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z ⇒ x2 + 5xy + 5y2 ∈ Z Vậy A số phương Bài 2: Chứng minh tích số tự nhiên liên tiếp cộng số phương Gọi số tự nhiên, liên tiêp n, n + 1, n+ 2, n + (n ∈ N) Ta có n(n + 1)(n + 2)(n + 3) + = n.(n + 3(n + 1)(n + 2) + = (n2 + 3n)( n2 + 3n + 2) + (*) Đặt n2 + 3n = t (t ∈ N) (*) = t( t + ) + = t2 + 2t + = ( t + )2 = (n2 + 3n + 1)2 Vì n ∈ N nên n2 + 3n + ∈ N Vậy n(n + 1)(n + 2)(n + 3) + số phương Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + + k(k+1)(k+2) Chứng minh 4S + số phương 1 k(k+1)(k+2).4 = k(k+1)(k+2).[(k+3) – (k-1)] 4 1 = k(k+1)(k+2)(k+3) - k(k+1)(k+2)(k-1) 4 1 1 1 ⇒ S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +…+ k(k+1)(k+2)(k+3) 4 4 4 k(k+1)(k+2)(k-1) = k(k+1)(k+2)(k+3) Ta có k(k+1)(k+2) = 4S + = k(k+1)(k+2)(k+3) + Theo kết ⇒ k(k+1)(k+2)(k+3) + số ph ương Bài 4: Cho dãy số 49; 4489; 444889; 44448889; … Dãy số xây dựng cách thêm số 48 vào số đứng trước Chứng minh tất số dãy số phương Ta có 44…488…89 = 44…488 + = 44…4 10n + 11…1 + n chữ số n-1 chữ số n chữ số n chữ số n chữ số n chữ số 10 n − 10 n − n = 10 + +1 9 4.10 n − 4.10 n + 8.10 n − + 4.10 n + 4.10 n + = = 9 n  2.10 +   =    Ta thấy 2.10n +1=200…01 có tổng chữ số chia hết chia hết cho n-1 chữ số  2.10 +   ⇒    n ∈ Z hay số có dạng 44…488…89 số phương Bài 5: Chứng minh số sau số phương: A = 11…1 + 44…4 + 2n chữ số n chữ số B = 11…1 + 11…1 + 66…6 + 2n chữ số n+1 chữ số n chữ số C = 44…4 + 22…2 + 88…8 + 2n chữ số n+1 chữ số n chữ số 2  10 n +   Kết quả: A =    ;  10 n +   B =    ;  2.10 n +   C =    Bài 6: Chứng minh số sau số phương: a A = 22499…9100…09 n-2 chữ số n chữ số b B = 11…155…56 n chữ số n-1 chữ số a A = 224.102n + 99…9.10n+2 + 10n+1 + = 224.102n + ( 10n-2 – ) 10n+2 + 10n+1 + = 224.102n + 102n – 10n+2 + 10n+1 + = 225.102n – 90.10n + = ( 15.10n – ) ⇒ A số phương b B = 111…1555…5 + = 11…1.10n + 5.11…1 + n chữ số n chữ số = n chữ số n chữ số 10 n − 10 n − 10 n − 10 n + 5.10 n − + 10n + +1= 9 = 10 2n  10 +  + 4.10 +  =    n n số phương ( điều phải chứng minh) Bài 7: Chứng minh tổng bình phương số tự nhiên liên tiếp số phương Gọi số tự nhiên liên tiếp n-2, n-1, n , n+1 , n+2 (n ∈ N , n ≥2 ) Ta có ( n-2)2 + (n-1)2 + n2 + ( n+1)2 + ( n+2)2 = 5.( n2+2) Vì n2 khơng thể tận n2+2 khơng thẻ chia hết cho ⇒ 5.( n2+2) khơng số phương hay A khơng số phương Bài 8: Chứng minh số có dạng n6 – n4 + 2n3 + 2n2 n ∈ N n>1 khơng phải số phương n6 – n4 + 2n3 +2n2 = n2.( n4 – n2 + 2n +2 ) = n2.[ n2(n-1)(n+1) + 2(n+1) ] = n2[ (n+1)(n3 – n2 + 2) ] = n2(n+1).[ (n3+1) – (n2-1) ] = n2( n+1 )2.( n2–2n+2) Với n ∈ N, n >1 n2-2n+2 = (n - 1)2 + > ( n – )2 n2 – 2n + = n2 – 2(n - 1) < n2 Vậy ( n – 1)2 < n2 – 2n + < n2 ⇒ n2 – 2n + số phương Bài 9: Cho số phương có chữ số hàng chục khác chữ số hàng đơn vị Chứng minh tổng chữ số hàng chục số phương số phương Cách 1: Ta biết số phương có chữ số hàng đơn vị chữ số hàng chục số lẻ Vì chữ số hàng chục số phương cho 1,3,5,7,9 tổng chúng + + + + = 25 = 52 số phương Cách 2: Nếu số phương M = a2 có chữ số hàng đơn vị chữ số tận a ⇒ a 2 ⇒ a2  Theo dấu hiệu chia hết cho hai chữ số tận M 16, 36, 56, 76, 96 ⇒ Ta có: + + + + = 25 = 52 số phương Bài 10: Chứng minh tổng bình phương hai số lẻ khơng phải số phương a b lẻ nên a = 2k+1, b = 2m+1 (Với k, m ∈ N) ⇒ a2 + b2 = (2k+1)2 + (2m+1)2 = 4k2 + 4k + + 4m2 + 4m + = 4(k2 + k + m2 + m) + = 4t + (Với t ∈ N) Khơng có số phương có dạng 4t + (t ∈ N) a2 + b2 khơng thể số phương Bài 11: Chứng minh p tích n số nguyên tố p-1 p+1 khơng thể số phương Vì p tích n số ngun tố nên p 2 p không chia hết cho (1) a Giả sử p+1 số phương Đặt p+1 = m2 (m ∈ N) Vì p chẵn nên p+1 lẻ ⇒ m2 lẻ ⇒ m lẻ Đặt m = 2k+1 (k ∈ N) Ta có m2 = 4k2 + 4k + ⇒ p+1 = 4k2 + 4k + ⇒ p = 4k2 + 4k = 4k(k+1)  mâu thuẫn với (1) ⇒ p+1 số phương b p = 2.3.5… số chia hết cho ⇒ p-1 có dạng 3k+2 Khơng có số phương có dạng 3k+2 ⇒ p-1 khơng số phương Vậy p tích n số ngun tố p-1 p+1 khơng số phương Bài 12: Giả sử N = 1.3.5.7…2007 Chứng minh số ngun liên tiếp 2N-1, 2N 2N+1 khơng có số số phương a 2N-1 = 2.1.3.5.7…2007 – Có 2N  ⇒ 2N-1 khơng chia hết cho 2N-1 = 3k+2 (k ∈ N) ⇒ 2N-1 khơng số phương b 2N = 2.1.3.5.7…2007 Vì N lẻ ⇒ N khơng chia hết cho 2N  2N không chia hết cho 2N chẵn nên 2N không chia cho dư ⇒ 2N khơng số phương c 2N+1 = 2.1.3.5.7…2007 + 2N+1 lẻ nên 2N+1 không chia hết cho 2N không chia hết 2N+1 không chia cho dư ⇒ 2N+1 khơng số phương Bài 13: Cho a = 11…1 ; b = 100…05 2008 chữ số 2007 chữ số Chứng minh ab + số tự nhiên 10 2008 − Cách 1: Ta có a = 11…1 = ; b = 100…05 = 100…0 + = 102008 + 2008 chữ số 2007 chữ số 2008 chữ số  10 2008 +  (10 2008 − 1)(10 2008 + 5) (10 2008 ) + 4.10 2008 − +  ⇒ ab+1 = +1= =  9   ab + =  10 2008 + 2 10 2008 +   = 3   Ta thấy 102008 + = 100…02  nên 10 2008 + ∈ N hay ab + số tự nhiên 2007 chữ số Cách 2: b = 100…05 = 100…0 – + = 99…9 + = 9a +6 2007 chữ số 2008 chữ số 2008 chữ số ⇒ ab+1 = a(9a +6) + = 9a2 + 6a + = (3a+1)2 ⇒ ab + = (3a + 1) = 3a + N ∈ B DẠNG 2: TÌM GIÁ TRỊ CỦA BIẾN ĐỂ BIỂU THỨC LÀ SỐ CHÍNH PHƯƠNG Bài1: Tìm số tự nhiên n cho số sau số phương: a n2 + 2n + 12 b n ( n+3 ) c 13n + d n2 + n + 1589 Giải a Vì n2 + 2n + 12 số phương nên đặt n2 + 2n + 12 = k2 (k ∈ N) ⇒ (n2 + 2n + 1) + 11 = k2 ⇔ k2 – (n+1)2 = 11 ⇔ (k+n+1)(k-n-1) = 11 Nhận xét thấy k+n+1 > k-n-1 chúng số nguyên dương, nên ta viết (k+n+1)(k-n-1) = 11.1 ⇔ k+n+1 = 11 ⇔ k = k–n-1=1 n=4 b Đặt n(n+3) = a2 (n ∈ N) ⇒ n2 + 3n = a2 ⇔ 4n2 + 12n = 4a2 ⇔ (4n2 + 12n + 9) – = 4a2 ⇔ (2n + 3) - 4a2 = ⇔ (2n + + 2a)(2n + – 2a) = Nhận xét thấy 2n + + 2a > 2n + – 2a chúng số nguyên dương, nên ta viết (2n + + 2a)(2n + – 2a) = 9.1 ⇔ 2n + + 2a = ⇔ n = 2n + – 2a = a=2 c Đặt 13n + = y2 ( y ∈ N) ⇒ 13(n – 1) = y2 – 16 ⇔ 13(n – 1) = (y + 4)(y – 4) ⇒ (y + 4)(y – 4)  13 mà 13 số nguyên tố nên y +  13 y –  13 ⇒ y = 13k ± (Với k N) ∈ ⇒ 13(n – 1) = (13k ± )2 – 16 = 13k.(13k ± 8) ⇒ n = 13k2 ± 8k + Vậy n = 13k2 ± 8k + (Với k ∈ N) 13n + số phương d Đặt n2 + n + 1589 = m2 (m ∈ N) ⇒ (4n2 + 1)2 + 6355 = 4m2 ⇔ (2m + 2n +1)(2m – 2n -1) = 6355 Nhận xét thấy 2m + 2n +1> 2m – 2n -1 > chúng số lẻ, nên ta viết (2m + 2n +1)(2m – 2n -1) = 6355.1 = 1271.5 = 205.31 = 155.41 Suy n có giá trị sau: 1588; 316; 43; 28 Bài 2: Tìm a để số sau số phương: a a2 + a + 43 b a2 + 81 c a2 + 31a + 1984 Kết quả: a 2; 42; 13 b 0; 12; 40 c 12; 33; 48; 97; 176; 332; 565; 1728 Bài 3: Tìm số tự nhiên n ≥ cho tổng 1! + 2! + 3! + … + n! số phương Với n = 1! = = 12 số phương Với n = 1! + 2! = khơng số phương Với n = 1! + 2! + 3! = 1+1.2+1.2.3 = = 32 số phương Với n ≥ ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 5!; 6!; …; n! tận 1! + 2! + 3! + … + n! có tận chữ số nên khơng phải số phương Vậy có số tự nhiên n thỏa mãn đề n = 1; n = Bài 4: Tìm n ∈ N để số sau số phương: a n2 + 2004 ( Kết quả: 500; 164) b (23 – n)(n – 3) ( Kết quả: 3; 5; 7; 13; 19; 21; 23) c n2 + 4n + 97 d 2n + 15 Bài 5: Có hay khơng số tự nhiên n để 2006 + n2 số phương Giả sử 2006 + n2 số phương 2006 + n2 = m2 (m ∈ N) Từ suy m2 – n2 = 2006 ⇔ (m + n)(m - n) = 2006 Như số m n phải có số chẵn (1) Mặt khác m + n + m – n = 2m ⇒ số m + n m – n tính chẵn lẻ (2) Từ (1) (2) ⇒ m + n m – n số chẵn ⇒ (m + n)(m - n)  Nhưng 2006 không chia hết cho ⇒ Điều giả sử sai Vậy không tồn số tự nhiên n để 2006 + n2 số phương Bài 6: Biết x ∈ N x>2 Tìm x cho x(x-1).x(x-1) = (x-2)xx(x-1) Đẳng thức cho viết lại sau: x(x-1) = (x-2)xx(x-1) Do vế trái số phương nên vế phải số phương Một số phương tận chữ số 0; 1; 4; 5; 6; nên x tận chữ số 1; 2; 5; 6; 7; (1) Do x chữ số nên x ≤ 9, kết hợp với điều kiện đề ta có x ∈ N < x ≤ (2) Từ (1) (2) ⇒ x nhận giá trị 5; 6; Bằng phép thử ta thấy có x = thỏa mãn đề bài, 762 = 5776 Bài 7: Tìm số tự nhiên n có chữ số biết 2n+1 3n+1 số phương Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199 Tìm số phương lẻ khoảng ta 25; 49; 81; 121; 169 tương ứng với số n 12; 24; 40; 60; 84 Số 3n+1 37; 73; 121; 181; 253 Chỉ có 121 số phương Vậy n = 40 Bài 8: Chứng minh n số tự nhiên cho n+1 2n+1 số phương n bội số 24 Vì n+1 2n+1 số phương nên đặt n+1 = k2 , 2n+1 = m2 (k, m ∈ N) Ta có m số lẻ ⇒ m = 2a+1 ⇒ m2 = 4a (a+1) + 4a(a + 1) m2 −1 ⇒ n= = = 2a(a+1) 2 ∈ ⇒ n chẵn ⇒ n+1 lẻ ⇒ k lẻ ⇒ Đặt k = 2b+1 (Với b N) ⇒ k2 = 4b(b+1) +1 ⇒ n = 4b(b+1) ⇒ n  (1) Ta có k2 + m2 = 3n + ≡ (mod3) Mặt khác k2 chia cho dư 1, m2 chia cho dư Nên để k2 + m2 ≡ (mod3) k2 ≡ (mod3) m2 ≡ (mod3) ⇒ m2 – k2  hay (2n+1) – (n+1)  ⇒ n  (2) Mà (8; 3) = (3) Từ (1), (2), (3) ⇒ n  24 Bài 9: Tìm tất số tự nhiên n cho số 28 + 211 + 2n số phương Giả sử 28 + 211 + 2n = a2 (a ∈ N) 2n = a2 – 482 = (a+48)(a-48) 2p.2q = (a+48)(a-48) Với p, q ∈ N ; p+q = n p > q ⇒ a+48 = 2p ⇒ 2p – 2q = 96 ⇔ 2q (2p-q -1) = 25.3 a- 48 = 2q ⇒ q = p-q = ⇒ p = ⇒ n = 5+7 = 12 Thử lại ta có: 28 + 211 + 2n = 802 C.DẠNG 3: TÌM SỐ CHÍNH PHƯƠNG Bài 1: Cho A số phương gồm chữ số Nếu ta thêm vào chữ số A đơn vị ta số phương B Hãy tìm số A B Gọi A = abcd = k2 Nếu thêm vào chữ số A đơn vị ta có số B = (a+1)(b+1)(c+1)(d+1) = m2 với k, m ∈ N 32 < k < m < 100 a, b, c, d ∈ N ; ≤ a ≤ ; ≤ b, c, d ≤ ⇒ Ta có A = abcd = k2 B = abcd + 1111 = m2 ⇒ m2 – k2 = 1111 ⇔ (m-k)(m+k) = 1111 (*) Nhận xét thấy tích (m-k)(m+k) > nên m-k m+k số nguyên dương Và m-k < m+k < 200 nên (*) viết (m-k)(m+k) = 11.101 Do m – k == 11 ⇔ m = 56 ⇔ A = 2025 m + k = 101 n = 45 B = 3136 Bài 2: Tìm số phương gồm chữ số biết số gồm chữ số đầu lớn số gồm chữ số sau đơn vị Đặt abcd = k2 ta có ab – cd = k ∈ N, 32 ≤ k < 100 Suy 101cd = k2 – 100 = (k-10)(k+10) ⇒ k +10  101 k-10  101 Mà (k-10; 101) = ⇒ k +10  101 Vì 32 ≤ k < 100 nên 42 ≤ k+10 < 110 ⇒ k+10 = 101 ⇒ k = 91 ⇒ abcd = 912 = 8281 Bài 3: Tìm số phương có chữ số biết chữ số đầu giống nhau, chữ số cuối giống Gọi số phương phải tìm aabb = n2 với a, b ∈ N, ≤ a ≤ 9; ≤ b ≤ Ta có n2 = aabb = 11.a0b = 11.(100a+b) = 11.(99a+a+b) (1) Nhận xét thấy aabb  11 ⇒ a + b  11 Mà ≤ a ≤ ; ≤ b ≤ nên ≤ a+b ≤ 18 ⇒ a+b = 11 Thay a+b = 11 vào (1) n2 = 112(9a+1) 9a+1 số phương Bằng phép thử với a = 1; 2; …; ta thấy có a = thỏa mãn ⇒ b = Số cần tìm 7744 Bài 4: Tìm số có chữ số vừa số phương vừa lập phương Gọi số phương abcd Vì abcd vừa số phương vừa lập phương nên đặt abcd = x2 = y3 Với x, y ∈ N Vì y3 = x2 nên y số phương Ta có 1000 ≤ abcd ≤ 9999 ⇒ 10 ≤ y ≤ 21 y phương ⇒ y = 16 ⇒ abcd = 4096 Bài 5: Tìm số phương gồm chữ số cho chữ số cuối số nguyên tố, bậc hai số có tổng chữ số số phương Gọi số phải tìm abcd với a, b, c, d nguyên ≤ a ≤ ; ≤ b,c,d ≤ abcd phương ⇒ d ∈ { 0,1,4,5,6,9} d nguyên tố ⇒ d = Đặt abcd = k2 < 10000 ⇒ 32 ≤ k < 100 k số có hai chữ số mà k2 có tận ⇒ k tận Tổng chữ số k số phương ⇒ k = 45 ⇒ abcd = 2025 Vậy số phải tìm 2025 Bài 6: Tìm số tự nhiên có hai chữ số biết hiệu bình phương số viết số hai chữ số số theo thứ tự ngược lại số phương Gọi số tự nhiên có hai chữ số phải tìm ab ( a,b ∈ N, ≤ a,b ≤ ) Số viết theo thứ tự ngược lại ba 2 Ta có ab - ba = ( 10a + b ) – ( 10b + a )2 = 99 ( a2 – b2 )  11 ⇒ a2 - b2  11 Hay ( a-b )(a+b )  11 Vì < a - b ≤ , ≤ a+b ≤ 18 nên a+b  11 ⇒ a + b = 11 2 Khi ab - ba = 32 112 (a - b) 2 Để ab - ba số phương a - b phải số phương a-b = a-b=4 • Nếu a-b = kết hợp với a+b = 11 ⇒ a = 6, b = 5, ab = 65 Khi 652 – 562 = 1089 = 332 • Nếu a - b = kết hợp với a+b = 11 ⇒ a = 7,5 ( loại ) Vậy số phải tìm 65 Bài 7: Cho số phương có chữ số Nếu thêm vào chữ số ta số phương Tìm số phương ban đầu ( Kết quả: 1156 ) Bài 8: Tìm số có chữ số mà bình phương số lập phương tổng chữ số Gọi số phải tìm ab với a,b ∈N ≤ a ≤ , ≤ b ≤ Theo giả thiết ta có : ab = ( a + b )3 ⇔ (10a+b)2 = ( a + b )3 ⇒ ab lập phương a+b số phương Đặt ab = t3 ( t ∈N ) , a + b = l ( l ∈N ) Vì 10 ≤ ab ≤ 99 ⇒ ab = 27 ab = 64 • Nếu ab = 27 ⇒ a + b = số phương • Nếu ab = 64 ⇒ a + b = 10 khơng số phương ⇒ loại Vậy số cần tìm ab = 27 Bài 9: Tìm số lẻ liên tiếp mà tổng bình phương số có chữ số giống Gọi số lẻ liên tiếp 2n-1, 2n+1, 2n+3 ( n ∈N) Ta có A= ( 2n-1 )2 + ( 2n+1)2 + ( 2n+3 )2 = 12n2 + 12n + 11 Theo đề ta đặt 12n2 + 12n + 11 = aaaa = 1111.a với a lẻ ≤ a ≤ ⇒ 12n( n + ) = 11(101a – ) ⇒ 101a –  ⇒ 2a –  Vì ≤ a ≤ nên ≤ 2a-1 ≤ 17 2a-1 lẻ nên 2a – ∈{ 3; 9; 15 } ⇒ a ∈{ 2; 5; } Vì a lẻ ⇒ a = ⇒ n = 21 số càn tìm 41; 43; 45 Bài 10: Tìm số có chữ số cho tích số với tổng chữ số tổng lập phương chữ số số ab (a + b ) = a3 + b3 ⇔ 10a + b = a2 – ab + b2 = ( a + b )2 – 3ab ⇔ 3a( + b ) = ( a + b ) ( a + b – ) a + b a + b – nguyên tố a + b = 3a a + b – = 3a a +b–1=3+b a+b=3+b ⇒ a=4,b=8 a=3,b=7 Vậy ab = 48 ab = 37 Hướng dẫn Các ước của –5 ± 1, ± Thử trực tiếp ta thấy các số không nghiệm của f(x) Như vậy f(x) nghiệm nghuyên Xét các số , ta thấy đa thức có nhân tử 3x – Ta phân tích sau : nghiệm của đa thức, f(x) = (3x3 – x2) – (6x2 – 2x) + (15x – 5) = (3x – 1)(x2 – 2x + 5) IV PHƯƠNG PHÁP THÊM VÀ BỚT CÙNG MỘT HẠNG TỬ Thêm bớt hạng tử làm xuất hiệu hai bình ph ương Ví dụ 12 Phân tích đa thức x4 + x2 + thành nhân tử Lời giải Cách : x4 + x2 + = (x4 + 2x2 + 1) – x2 = (x2 + 1)2 – x2 = (x2 – x + 1)(x2 + x + 1) Cách : x4 + x2 + = (x4 – x3 + x2) + (x3 + 1) = x2(x2 – x + 1) + (x + 1)(x2 – x + 1) = (x2 – x + 1)(x2 + x + 1) Cách : x4 + x2 + = (x4 + x3 + x2) – (x3 – 1) = x2(x2 + x + 1) + (x – 1)(x2 + x + 1) = (x2 – x + 1)(x2 + x + 1) Ví dụ 13 Phân tích đa thức x4 + 16 thành nhân tử Lời giải Cách : x4 + = (x4 + 4x2 + 4) – 4x2 = (x2 + 2)2 – (2x)2 = (x2 – 2x + 2)(x2 + 2x + 2) Cách : x4 + = (x4 + 2x3 + 2x2) – (2x3 + 4x2 + 4x) + (2x2 + 4x + 4) = (x2 – 2x + 2)(x2 + 2x + 2) Thêm bớt hạng tử làm xuất nhân tử chung Ví dụ 14 Phân tích đa thức x5 + x - thành nhân tử Lời giải Cách x5 + x - = x5 - x4 + x3 + x4 - x3 + x2 - x2 + x - = x3(x2 - x + 1) - x2(x2 - x + 1) - (x2 - x + 1) = (x2 - x + 1)(x3 - x2 - 1) Cách Thêm bớt x2 : x5 + x - = x5 + x2 - x2 + x - = x2(x3 + 1) - (x2 - x + 1) = (x2 - x + 1)[x2(x + 1) - 1] = (x2 - x + 1)(x3 - x2 - 1) Ví dụ 15 Phân tích đa thức x7 + x + thành nhân tử Lời giải x7 + x2 + = x7 – x + x2 + x + = x(x6 – 1) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + (x2+ x + 1) = x(x3 + 1)(x - 1)(x2 + x + 1) + ( x2 + x + 1) = (x2 + x + 1)(x5 - x4 – x2 - x + 1) Lưu ý : Các đa thức dạng x3m + + x3n + + x7 + x2 + 1, x4 + x5 + chứa nhân tử x2 + x + V PHƯƠNG PHÁP ĐỔI BIẾN Đặt ẩn phụ để đưa dạng tam thức bậc hai sử dụng phương pháp Ví dụ 16 Phân tích đa thức sau thành nhân tử : x(x + 4)(x + 6)(x + 10) + 128 Lời giải x(x + 4)(x + 6)(x + 10) + 128 = (x2 + 10x)(x2 + 10x + 24) + 128 Đặt x2 + 10x + 12 = y, đa thức đã cho có dạng : (y - 12)(y + 12) + 128 = y2 - 16 = (y + 4)(y - 4) = (x2 + 10x + 16)(x2 + 10x + 8) = (x + 2)(x + 8)(x2 + 10x + 8) Nhận xét: Nhờ phương pháp đổi biến ta đã đưa đa thức bậc x thành đa thức bậc y Ví dụ 17 Phân tích đa thức sau thành nhân tử : A = x4 + 6x3 + 7x2 - 6x + Lời giải Cách Giả sử x ≠ Ta viết đa thức dạng : Đặt thì Do : A = x2(y2 + + 6y + 7) = x2(y + 3)2 = (xy + 3x)2 = = (x2 + 3x - 1)2 Dạng phân tích với x = Cách A = x4 + 6x3 - 2x2 + 9x2 - 6x + = x4 + (6x3 -2x2) + (9x2 - 6x + 1) = x4 + 2x2(3x - 1) + (3x - 1)2 = (x2 + 3x - 1)2 VI PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH Ví dụ 18 Phân tích đa thức sau thành nhân tử : x4 - 6x3 + 12x2 - 14x - Lời giải Thử với x= ±1; ±3 khơng nghiệm của đa thức, đa thức khơng có nghiệm ngun khơng có nghiệm hữu tỷ Như vậy đa thức phân tích thành nhân tử thì phải có dạng (x2 + ax + b)(x2 + cx + d) = x4 +(a + c)x3 + (ac+b+d)x2 + (ad+bc)x + bd = x4 - 6x3 + 12x2 - 14x + Đồng các hệ số ta : Xét bd= với b, d Ỵ Z, b Î {± 1, ± 3} Với b = thì d = 1, hệ điều kiện trở thành 2c = -14 - (-6) = -8 Do c = -4, a = -2 Vậy x4 - 6x3 + 12x2 - 14x + = (x2 - 2x + 3)(x2 - 4x + 1) VII PHƯƠNG PHÁP XÉT GIÁ TRỊ RIÊNG Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử cịn lại Ví dụ 19 Phân tích đa thức sau thành nhân tử : P = x2(y – z) + y2(z – x) + z(x – y) Lời giải Thay x y P = y2(y – z) + y2( z – y) = Như P chứa thừa số (x – y) Ta thấy thay x bởi y, thay y bởi z, thay z bởi x thì p không đổi (đa thức P hoán vị vịng quanh) Do P đã chứa thừa số (x – y) thì chứa thừa số (y – z), (z – x) Vậy P có dạng k(x – y)(y – z)(z – x) Ta thấy k phải số P có bậc tập hợp biến x, y, z, cịn tích – y)(y – z)(z – x) có bậc tập hợp biến x, y, z (x Vì đẳng thức x2(y – z) + y2(z – x) + z2(x – y) = k(x – y)(y – z)(z – x) với x, y, z nên ta gán cho biến x ,y, z giá trị riêng, chẳng hạn x = 2, y = 1, z = ta được: 4.1 + 1.(–2) + = k.1.1.(–2) suy k =1 Vậy P = –(x – y)(y – z)(z – x) = (x – y)(y – z)(x – z) VIII PHƯƠNG PHÁP ĐƯA VỀ MỘT SỐ ĐA THỨC ĐẶC BIỆT Đưa đa thức : a3 + b3 + c3 - 3abc Ví dụ 20 Phân tích đa thức sau thành nhân tử : a) a3 + b3 + c3 - 3abc b) (x - y)3 + (y - z)3 + (z - x)3 Lời giải a) a3 + b3 + c3 - 3abc = (a + b)3 - 3a2b - 3ab2 + c3 - 3abc = [(a + b)3 + c3] - 3ab(a + b + c) = (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = (a + b + c)(a2 + b2 + c2 - ab - bc -ca) b) Đặt x - y = a, y - z = b, z - x = c thì a + b + c Theo câu a) ta có : a3 + b3 + c3 - 3abc = Þ a3 + b3 + c3 = 3abc Vậy (x - y)3 + (y - z)3 + (z - x)3 = 3(x - y)(y - z)(z - x) Đưa đa thức : (a + b + c)3 - a3 - b3 - c3 Ví dụ 21 Phân tích đa thức sau thành nhân tử : a) (a + b + c)3 - a3 - b3 - c3 b) 8(x + y + z)3 - (x + y)3 - (y + z)3 - (z + x)3 Lời giải a) (a + b + c)3 - a3 - b3 - c3 = [(a + b) + c]3 - a3 - b3 - c3 = (a + b)3 + c3 + 3c(a + b)(a + b + c) - a3 - b3 - c3 = (a + b)3 + 3c(a + b)(a + b + c) - (a + b)(a2 - ab + b2) = (a + b)[(a + b)2 + 3c(a + b + c) - (a2 - ab + b2)] = 3(a + b)(ab + bc + ca + c2) = 3(a + b)[b(a + c) + c(a + c)] = 3(a + b)(b + c)(c + a) b) Đặt x + y = a, y + z = b, z + x = c thì a + b + c = 2(a + b + c) Đa thức đã cho có dạng : (a + b + c)3 - a3 - b3 - c3 Theo kết câu a) ta có : (a + b + c)3 - a3 - b3 - c3 = 3(a + b)(b + c)(c + a) Hay 8(x + y + z)3 - (x + y)3 - (y + z)3 - (z + x)3 = 3(x + 2y + z)(y + 2z + x)(z + 2x + y) II Bài tập: Bài tập 1: Phân tích đa thức thành nhân tử 16x3y + 0,25yz3 21 (a + b + c)2 + (a + b – c)2 – 4c2 x – 4x3 + 4x2 22 4a2b2 – (a2 + b2 – c2)2 2ab2 – a2b – b3 23 a + b4 + c4 – 2a2b2 – 2b2c2 – 2a2c2 a + a2b – ab2 – b3 24 a(b3 – c3) + b(c3 – a3) + c(a3 – b3) x + x2 – 4x – 25 a – a4 + 2a3 + 2a2 x – x2 – x + 26 (a + b)3 – (a – b)3 x + x3 + x2 – 27 X – 3x2 + 3x – – y3 x 2y2 + – x2 – y2 28 X m + + xm + – x - 10 x – x2 + 2x – 29 (x + y)3 – x3 – y3 11 3a – 3b + a2 – 2ab + b2 30 (x + y + z)3 – x3 – y3 – z3 12 a + 2ab + b2 – 2a – 2b + 31 (b – c)3 + (c – a)3 + (a – b)3 13 a – b2 – 4a + 4b 32 x3 + y3+ z3 – 3xyz 14 a – b3 – 3a + 3b 33 (x + y)5 – x5 – y5 15 x + 3x2 – 3x – 34 (x2 + y2)3 + (z2 – x2)3 – (y2 + z2)3 16 x – 3x2 – 3x + 17 x – 4x2 + 4x – 18 4a2b2 – (a2 + b2 – 1)2 19 (xy + 4)2 – (2x + 2y)2 20 (a2 + b2 + ab)2 – a2b2 – b2c2 – c2a2 Bài tập 2: Phân tích đa thức thành nhân tử x2 – 6x + 23 x3 – 5x2y – 14xy2 x2 – 7xy + 10y2 24 x4 – 7x2 + a2 – 5a – 14 25 4x4 – 12x2 + 2m2 + 10m + 26 x2 + 8x + 4p2 – 36p + 56 27 x2 – 13x + 36 x3 – 5x2 – 14x 28 x2 + 3x – 18 a4 + a2 + 29 x2 – 5x – 24 a4 + a2 – 30 3x2 – 16x + x4 + 4x2 + 31 8x2 + 30x + 10 x3 – 10x – 12 32 2x2 – 5x – 12 11 x3 – 7x – 33 6x2 – 7x – 20 12 x2 – 7x + 12 34 x2 – 7x + 10 13 x2 – 5x – 14 35 x2 – 10x + 16 14 x2 – 3x – 36 3x2 – 14x + 11 15 x2 – 7x + 37 5x2 + 8x – 13 16 x2 – 7x + 38 x2 + 19x + 60 17 6x3 – 17x2 + 14x – 39 x4 + 4x2 - 18 4x3 – 25x2 – 53x – 24 40 x3 – 19x + 30 19 x4 – 34x2 + 225 41 x3 + 9x2 + 26x + 24 20 4x4 – 37x2 + 42 4x2 – 17xy + 13y2 21 x4 + 3x3 + x2 – 12x – 20 43 - 7x2 + 5xy + 12y2 22 2x4 + 5x3 + 13x2 + 25x + 15 44 x3 + 4x2 – 31x - 70 Bài tập 3: Phân tích đa thức thành nhân tử x4 + x2 + 17 x5 - x4 - x4 – 3x2 + 18 x12 – 3x6 + x4 + 3x2 + 19 x8 - 3x4 + 2x4 – x2 – 20 a5 + a + a + a + a + x4y4 + 21 m3 – 6m2 + 11m - 6 x4y4 + 64 22 x4 + 6x3 + 7x2 – 6x + x4y4 + 23 x3 + 4x2 – 29x + 24 32x4 + 24 x10 + x8 + x6 + x4 + x2 + x4 + 4y4 25 x7 + x5 + x4 + x3 + x2 + 10 x7 + x2 + 26 x5 – x4 – x3 – x2 – x - 11 x8 + x + 27 x8 + x6 + x4 + x2 + 12 x8 + x7 + 28 x9 – x7 – x6 – x5 + x4 + x3 + x2 + + 3x4 + 29 a(b3 – c3) + b(c3 – a3) + c(a3 – b3) 13 14 x10 + x5 + 15 x5 + x + 16 x5 + x4 + Bài tập 4: Phân tích đa thức thành nhân tử x2 + 2xy – 8y2 + 2xz + 14yz – 3z2 3x2 – 22xy – 4x + 8y + 7y2 + 12x2 + 5x – 12y2 + 12y – 10xy – 2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2 x2 + 3xy + 2y2 + 3xz + 5yz + 2z2 x2 – 8xy + 15y2 + 2x – 4y – x4 – 13x2 + 36 x4 + 3x2 – 2x + x4 + 2x3 + 3x2 + 2x + Bài tập 5: Phân tích đa thức thành nhân tử: (a – b)3 + (b – c)3 + (c – a)3 (a – x)y3 – (a – y)x3 – (x – y)a3 x(y2 – z2) + y(z2 – x2) + z(x2 – y2) (x + y + z)3 – x3 – y3 – z3 3x5 – 10x4 – 8x3 – 3x2 + 10x + 5x4 + 24x3 – 15x2 – 118x + 24 15x3 + 29x2 – 8x – 12 x4 – 6x3 + 7x2 + 6x – x3 + 9x2 + 26x + 24 Bài tập 6: Phân tích đa thức thành nhân tử a(b + c)(b2 – c2) + b(a + c)(a2 – c2) + c(a + b)(a2 – b2) ab(a – b) + bc(b – c) + ca(c – a) a(b2 – c2) – b(a2 – c2) + c(a2 – b2) (x – y)5 + (y – z)5 + (z – x)5 (x + y)7 – x7 – y7 ab(a + b) + bc(b + c) + ca(c + a) + abc (x + y + z)5 – x5 – y5 – z5 a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc a3(b – c) + b3(c – a) + c3(a – b) 10 abc – (ab + bc + ac) + (a + b + c) – Bài tập 7: Phân tích đa thức thành nhân tử (x2 + x)2 + 4x2 + 4x – 12 (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 (x2 + x + 1)(x2 + x + 2) – 12 (x + 1)(x + 2)(x + 3)(x + 4) – 24 (x2 + 2x)2 + 9x2 + 18x + 20 x2 – 4xy + 4y2 – 2x + 4y – 35 (x + 2)(x + 4)(x + 6)(x + 8) + 16 (x2 + x)2 + 4(x2 + x) – 12 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2 Chuyên đề Tính chia hết với số nguyên I Mục tiêu Sau học xong chuyên đề học sinh có khả năng: 1.Biết vận dụng tính chất chia hÕt cđa sè nguyªn dể chứng minh quan hƯ chia hết, tìm số d tìm điều kiện chia hết Hiểu bước phân tích tốn, tìm hướng chứng minh Có kĩ vận dụng kiến thức trang bị để giải toán II Các tài liệu hỗ trợ: - Bài tập nâng cao số chuyên đề toán - Toán nâng cao chuyên đề đại số - Bồi dưỡng toán - Nâng cao phát triển toán -… III Nội dung Kiến thức cần nhớ Chøng minh quan hƯ chia hÕt Gäi A(n) lµ mét biĨu thức phụ thuộc vào n (n N n ∈ Z) a/ §Ĩ chøng minh A(n) chia hÕt cho m ta phân tích A(n) thành tích có thừa số m + Nếu m hợp số ta phân tích m thành tích thừa số đôI nguyên tố chứng minh A(n) chia hết cho tất số + Trong k số liên tiếp tồn sè lµ béi cđa k b/ Khi chøng minh A(n) chia hÕt cho n ta cã thÓ xÐt mäi trêng hỵp vỊ sè d chia m cho n * VÝ dô1: C/minh r»ng A=n3(n2- 7)2 – 36n chia hÕt cho 5040 với số tự nhiên n Giải: Ta cã 5040 = 24 32.5.7 A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n [n.(n 2-7 ) -6].[n.(n27 ) +6] = n.(n3-7n – 6).(n3-7n +6) Ta l¹i cã n3-7n – = n3 + n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1) =(n+1)(n2-n-6)= (n+1 )(n+2) (n-3) T¬ng tù : n3-7n+6 = (n-1) (n-2)(n+3) d Do ®ã A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3) Ta thấy : A tích số nguyên liên tiếp mà số nguyên liên tiếp: Tồn bội số (nên A M5 ) Tồn bội (nên A M7 ) Tồn hai bội (nên A M9 ) Tồn bội có bội cđa (nªn A M16) VËy A chia hÕt cho 5, 7,9,16 đôi nguyên tố A 5.7.9.16= 5040 M VÝ dơ 2: Chng minh r»ng víi số nguyên a : a/ a3 a chia hÕt cho b/ a5-a chia hÕt cho Gi¶i: a/ a3-a = (a-1)a (a+1) tích số nguyªn liªn tiÕp nªn tÝch chia hÕt cho b/ A= a5-a = a(a2-1) (a2+1) ã Cách 1: Ta xết mäi trêng hỵp vỊ sè d chia a cho NÕu a= k (k ∈ Z) th× A M (1) NÕu a= 5k ± th× a -1 = (5k2 ± 1) -1 = 25k2 ± 10k M ⇒A M (2) NÕu a= 5k ± th× a2+1 = (5k ± 2)2 + = 25 k2 ± 20k +5 ⇒ A (3) M Tõ (1),(2),(3) ⇒ A M 5, ∀ n Z Cách 2: Phân tích A thành tổng cđa hai sè h¹ng chia hÕt cho : + Một số hạng tích số nguyên liên tiÕp + Mét sè h¹ng chøa thõa sè Ta cã : a5-a = a( a2-1) (a2+1) = a(a2-1)(a2-4 +5) = a(a2-1) (a2-4) + 5a(a2-1) = a(a-1)(a+1) (a+2)(a-2)- 5a (a2-1) Mµ = a(a-1)(a+1) (a+2)(a-2) M (tÝch cđa sè nguyªn liªn tiÕp ) 5a (a2-1) M 5 Do a -a M * Cách 3: Dựa vào cách 2: Chứng minh hiệu a5-a tích sè nguyªn liªn tiÕp chia hÕt cho Ta cã: a5-a – (a-2)(a-1)a(a+1)(a+2) = a5-a – (a2- 4)a(a2-1) = a5-a - (a34a)(a2-1) = a5-a - a5 + a3 +4a3 - 4a = 5a3 – 5a M 5 ⇒ a -a – (a-2)(a-1)a(a+1)(a+2) M ⇒ a5-a M Mµ (a-2)(a-1)a(a+1)(a+2) M 5(TÝnh chÊt chia hÕt cđa mét hiƯu) c/ Khi chøng minh tÝnh chia hÕt cđa c¸c l thõa ta sử dụng đẳng thức: an bn = (a – b)( an-1 + an-2b+ an-3b2+ …+abn-2+ bn-1) (H§T 8) n n n-1 n-2 n-3 n-2 n-1 a + b = (a + b)( a - a b+ a b - …- ab + b ) (HĐT 9) - Sử dụng tam giác Paxcan: 1 1 1 3 1 Mỗi dòng bắt đầu kết thúc Mỗi số dòng (kể từ dòng thứ 2) số liền cộng với số bên trái số liền Do ®ã: Víi ∀ a, b ∈ Z, n ∈ N: an – bn chia hÕt cho a – b( a ≠ b) a2n+1 + b2n+1 chia hÕt cho a + b( a ≠ -b) (a+b)n = Bsa +bn ( BSa:Béi sè cña a) (a+1)n = Bsa +1 (a-1)2n = Bsa +1 (a-1)2n+1 = Bsa -1 * VD3: CMR víi mäi sè tù nhiªn n, biĨu thøc 16 n – chia hÕt cho 17 vµ chØ n số chẵn Giải: + Cách 1: - Nếu n chẵn: n = 2k, k N thì: A = 162k – = (162)k – chia hÕt cho 162 1( theo nhị thức Niu Tơn) Mà 162 – = 255 M 17 VËy A M 17 n - Nếu n lẻ : A = 16 – = 16n + – mµ n lẻ 16n + M 16+1=17 (HĐT 9) A không chia hết cho 17 +Cách 2: A = 16n – = ( 17 – 1)n – = BS17 +(-1)n (theo công thức Niu Tơn) Nếu n chẵn A = BS17 + = BS17 chia hÕt cho 17 NÕu n lỴ th× A = BS17 – – = BS17 – Kh«ng chia hÕt cho 17 VËy biĨu thøc 16n – chia hÕt cho 17 vµ chØ n số chẵn, n N d/ Ngoài dùng phơng pháp phản chứng, nguyên lý Dirichlê để chứng minh quan hệ chia hết ã VD 4: CMR tån t¹i mét béi cđa 2003 cã d¹ng: 2004 2004….2004 Gi¶i: XÐt 2004 sè: a1 = 2004 a2 = 2004 2004 a3 = 2004 2004 2004 ……………………… a2004 = 2004 2004…2004 2004 nhãm 2004 Theo nguyªn lý Dirichle, tån t¹i hai sè cã cïng sè d chia cho 2003 Gọi hai số am an ( ≤ n nªn 3n – > Ta lại có: 3n < 4n +5(vì n 0) nên để 12n2 5n 25 số ngyên tố thừa số nhỏ phải hay 3n – = ⇒ n = Khi ®ã, 12n2 – 5n – 25 = 13.1 = 13 số nguyên tố Vậy với n = giá trị biểu thức 12n 5n 25 số nguyên tố 13 b/ 8n2 + 10n +3 = (2n – 1)(4n + 3) BiÕn ®ỉi tơng tự ta đợc n = Khi đó, 8n + 10n +3 số nguyên tố n3 + 3n c/ A = Do A lµ sè tù nhiªn nªn n(n + 3) M 4 Hai số n n + chẵn VËy hc n , hc n + chia hÕt cho - NÕu n = th× A = 0, không số nguyên tố - Nếu n = A = 7, số nguyên tố -Nếu n = 4k víi k ∈ Z, k > A = k(4k + 3) tích hai thừa số lớn nên A hợp số - NÕu n + = th× A = 1, không số nguyên tố - Nếu n + = 4k víi k ∈ Z, k > A = k(4k - 3) tích hai thừa số lớn nên A hợp số n3 + 3n Vậy với n = số nguyên tố Bài 7: Đố vui: Năm sinh hai bạn Một ngày thập kỷ cuối kỷ XX, nhờ khách đến thăm trờng gặp hai học sinh Ngời khách hỏi: Có lẽ hai em tuổi nhau? Bạn Mai trả lời: Không, em bạn em tuổi Nhng tổng chữ số năm sinh chúng em số chẵn Vậy em sinh năm 1979 1980, không? Ngời khách đà suy luận nào? Giải: Chữ số tận năm sinh hai bạn phảI trờng hợp ngựoc lại tổng chữ số năm sinh hai bạn 1, số chẵn Gọi năm sinh Mai 19a9 +9+a+9 = 19 + a Mn tỉng nµy lµ số chẵn a {1; 3; 5; 7; 9} Hiển nhiên Mai sinh năm 1959 1999 Vậy Mai sinh năm 1979, bạn Mai sinh năm 1980 Chúc bạn học tốt!!! ... = x2(y – z) + y2(z – x) + z(x – y) Lời giải Thay x y P = y2(y – z) + y2( z – y) = Như P chứa thừa số (x – y) Ta thấy thay x bởi y, thay y bởi z, thay z bởi x thì p khơng đổi (đa thức P hoán... ( n+1)2 + ( n+2)2 = 5.( n2+2) Vì n2 tận n2+2 khơng thẻ chia hết cho ⇒ 5.( n2+2) khơng số phương hay A khơng số phương Bài 8: Chứng minh số có dạng n6 – n4 + 2n3 + 2n2 n ∈ N n>1 khơng phải số phương...   ab + =  10 2008 + 2 10 2008 +   = 3   Ta thấy 102008 + = 100…02  nên 10 2008 + ∈ N hay ab + số tự nhiên 2007 chữ số Cách 2: b = 100…05 = 100…0 – + = 99…9 + = 9a +6 2007 chữ số 2008

Ngày đăng: 22/10/2022, 10:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w