1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN

110 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phân Phối Xác Suất Và Thống Kê Toán
Trường học Đại học Bách Khoa HN
Định dạng
Số trang 110
Dung lượng 2,06 MB

Nội dung

Chương PHÂN PHỐI XÁC SUẤT VÀ THỐNG KÊ TOÁN Nội dung 2.1 Biến ngẫu nhiên 2.2 Quy luật phân phối xác suất 2.3 Tham số đặc trưng cho biến ngẫu nhiên 2.3.1.Tham số đặc trưng cho xu hướng trung tâm 2.3.2 Tham số đặc trưng cho độ phân tán 2.3.3 Tham số đặc trưng cho dạng phân phối xác suất 2.4 Tham số đặc trưng cho hệ hai biến ngẫu nhiên 2.5 Các dạng phân phối xác suất thông dụng 2.6 Ước lượng thống kê 2.7 Kiểm định giả thiết thống kê 2.1 Biến ngẫu nhiên  Việc thực nhóm điều kiện để quan sát tượng có xảy hay khơng gọi thực phép thử, cịn tượng xảy kết phép thử gọi biến cố  Ví dụ: Gieo súc sắc đồng chất mặt phẳng (phép thử) Kết số chấm xuất biến cố (tất yếu, bất khả, ngẫu nhiên)  Xác suất biến cố số đặc trưng khả khách quan xuất biến cố thực phép thử  "Xác suất xuất biến cố A phép thử tỷ số số kết cục thuận lợi cho A tổng số kết cục đồng khả xảy thực phép thử đó"  "Xác suất biến cố giới hạn tần suất xuất biến cố số phép thử tăng lên vơ hạn"  Ký hiệu xác suất xảy biến cố A P(A) ≈ f(A) ≤ P(A) ≤ 2.1 Biến ngẫu nhiên  “Một biến số gọi ngẫu nhiên kết phép thử nhận giá trị có tùy thuộc vào tác động nhân tố ngẫu nhiên"  Biến ngẫu nhiên đại lượng phụ thuộc vào kết phép thử ngẫu nhiên  Ví dụ 1: Gieo xúc sắc Gọi biến ngẫu nhiên số chấm xuất Biến ngẫu nhiên phụ thuộc kết phép thử nhận giá trị nguyên từ 1-6  Ví dụ 2: Biến ngẫu nhiên nhiệt độ phản ứng hóa học khoảng thời gian Biến ngẫu nhiên nhận giá trị khoảng [t0min-t0max]  Các biến ngẫu nhiên thường ký hiệu chữ lớn X, Y, Z,… giá trị chúng ký hiệu chữ nhỏ x, y, z 2.1 Biến ngẫu nhiên Phân loại  Biến ngẫu nhiên rời rạc (Discrete Random Variable)  X biến ngẫu nhiên rời rạc giá trị có X lập nên tập hữu hạn đếm  Biến ngẫu nhiên rời rạc liệt kê tất giá trị có biến  Ví dụ 1: Gọi X Số điểm thu tung xúc sắc X biến ngẫu nhiên rời rạc giá trị có tập hữu hạn X = 1,2,3,4,5,6  Ví dụ 2: Một phân xưởng có máy phát Gọi X Số máy hỏng ca X biến ngẫu nhiên rời rạc giá trị có X = 0,1,2,3,4,5  Ví dụ 3: Gọi X Số người vào siêu thị ngày X biến ngẫu nhiên rời rạc giá trị có X lập nên tập hợp đếm X = 0,1,2,3 2.1 Biến ngẫu nhiên Phân loại  Biến ngẫu nhiên liên tục (Continuous Random Variable)  X biến ngẫu nhiên liên tục giá trị có X lấp đầy khoảng trục số  Biến ngẫu nhiên liên tục liệt kê tất giá trị có biến  Ví dụ 1: Phép thử bắn vào bia Gọi X Khoảng cách từ điểm chạm viên đạn đến tâm bia X biến ngẫu nhiên liên tục giá trị có X lấp đầy khoảng trục số kể tất giá trị có X Chỉ nói X nằm khoảng (a,b)  Ví dụ 2: Gọi X Năng suất lúa vụ mùa tỉnh X biến ngẫu nhiên liên tục  Ví dụ 3: Gọi X Độ dài chi tiết máy sản xuất X biến ngẫu nhiên liên tục 2.2 Quy luật luật phân phối xác suất Định nghĩa  Quy luật phân phối xác suất biến ngẫu nhiên tương ứng giá trị có biến ngẫu nhiên xác suất tương ứng với giá trị  Có phương pháp mơ tả quy luật phân phối xác suất thông dụng biến ngẫu nhiên: Bảng phân phối xác suất, hàm phân phối xác suất hàm mật độ xác suất  Bảng phân phối xác suất:  Bảng phân phối xác suất dùng để mô tả quy luật phân phối xác suất biến ngẫu nhiên rời rạc  Giả sử biến ngẫu nhiên rời rạc X nhận giá trị có x1, x2 xn với xác suất tương ứng p1, p2 pn  Bảng phân phối xác suất biến ngẫu nhiên rời rạc X có dạng X x1 x2 xi xn 0≤ pi ≤1 P p1 p2 pi pn ∑pi = 2.2 Quy luật luật phân phối xác suất Ví dụ bảng phân phối xác suất  Ví dụ 1: Tung xúc sắc Gọi X "Số chấm xuất hiện" Hãy tìm quy luật phân phối xác suất X?  Giải: Vì X biến ngẫu nhiên rời rạc với cá giá trị có X = 1,2,3,4,5,6 với xác suất tương ứng 1/6 Bảng quy luật phân phối xác suất X có dạng: X P 1/6 1/6 1/6 1/6 1/6 1/6  Ví dụ 2: Trong hộp có 10 sản phẩm có phẩm Lấy ngẫu nhiên sản phẩm Tìm quy luật phân phối xác suất số phẩm lấy ra?  Giải: Gọi X Số phẩm lấy sản phẩm, X biến ngẫu nhiên rời rạc có giá trị X = 0,1,2 Cần tìm xác suất tương ứng với giá trị X có 2.2 Quy luật luật phân phối xác suất Ví dụ bảng phân phối xác suất  Số phẩm số phế phẩm  Xác xuất P(X=0) Xác suất khơng lấy phẩm (2 phế phẩm) Xác suất xảy ra:  P(X=0) = C42/C102 = 6/45 = 2/15  Xác xuất P(X=1) Xác suất lấy phẩm (1 phẩm phế phẩm) Xác suất xảy ra:  P(X=1) = C61C41/C102 = 24/45 = 8/15  Xác xuất P(X=2) Xác suất lấy phẩm (0 phế phẩm) Xác suất xảy ra:  P(X=2) = C62/C102 = 15/45 = 5/15  Bảng luật phân phối xác suất: X P 2/15 8/15 5/15 2.2 Quy luật luật phân phối xác suất Ví dụ bảng phân phối xác suất  Ví dụ 3: Một xạ thủ bắn phát, xác suất bắn trúng mục tiêu phát 0.6 Hãy lập bảng phân phối xác suất số đạn trúng mục tiêu?  Giải: Gọi X số đạn bắn trúng mục tiêu, giá trị có X= 0,1,2,3 Tìm xác suất tương ứng với giá trị có X Xác suất P(X= x) = p(x) = Cnxpxqn-x Với (n=3, p=0.6)  Bảng phân phối xác suất: X P 0.064 0.288 0.432 0.216 2.7 Kiểm định giả thuyết thống kê 2.7.2 Kiểm định kỳ vọng toán biến ngẫu nhiên phân phối chuẩn  Kiểm định phía cho kỳ vọng tổng thể:  Ví dụ: Để kiểm tra xem trọng lượng trung bình hộp ngũ cốc có 368g hay khơng, người ta lấy mẫu 25 hộp thấy trọng lượng trung bình 372.5g Cơng ty xác định độ lệch chuẩn cho phép σ = 15g Hãy thực kiểm định giả thuyết với α = 0.05 Biết trọng lượng trung bình hộp ngũ cốc có quy luật phân phối chuẩn  Giải: Giả thuyết H0: µ = 368 H1: µ ≠ 368 2.7 Kiểm định giả thuyết thống kê 2.7.2 Kiểm định kỳ vọng toán biến ngẫu nhiên phân phối chuẩn ( x − µ0 ) n (372.5 − 368) 25 U qs = = = 1.5 σ 15 Miền bác bỏ Miền bác bỏ Miền chấp nhận 0.025 -1.96 0.025 Uqs=1.5 -U0.025=NORMINV(0.025,0,1) U0.025=NORMINV(0.975,0,1) -U0.025=NORMSINV(0.025) 362.12 1.96 U µ=368 372.5 U0.025=NORMSINV(0.975) 373.88 X 2.7 Kiểm định giả thuyết thống kê 2.7.2 Kiểm định kỳ vọng toán biến ngẫu nhiên phân phối chuẩn  Giá trị xác suất kiểm định (P-value):  Cách kiểm định khác thay cho phương pháp tiếp cận truyền thống Thay kiểm định với giá trị α cho trước, định rõ giả thuyết sở H0 giả thuyết đối H1, thu thập mẫu xác định mức độ khẳng định việc bác bỏ giả thuyết H0 Mức độ khẳng định gọi giá trị P (P-value) kiểm định  Công thức tính giá trị P cho kiểm định giả thuyết thống kê: Nếu H1: μ>μ0 P-value=P(U>Uqs) Nếu H1: μ0.1 Nếu 0.05 σ20 H1: σ2 < σ20 H1: σ2 ≠ σ20 - Phương sai biết (σ02 biết) - Kiểm định với giá trị α cho trước 2.7 Kiểm định giả thuyết thống kê 2.7.3 Kiểm định phương sai biến ngẫu nhiên phân phối chuẩn  Miền bác bỏ: H0: σ2 ≤ σ20 H1: σ2 > σ20 Wα={χ2> χ2α (n-1)} H0: σ2 ≥ σ20 H1: σ2 < σ20 Wα={χ2< χ21-α (n-1)} H0: σ2 = σ20 H1: σ2 ≠ σ20 Wα={χ2< χ21-α/2 (n-1) χ2>χ2α/2(n-1)} Tiêu chuẩn kiểm định: *2 ( n − 1) S χ = σ0 2.7 Kiểm định giả thuyết thống kê 2.7.3 Kiểm định phương sai biến ngẫu nhiên phân phối chuẩn  Ví dụ: Để kiểm tra độ xác máy, người ta đo ngẫu nhiên kích thước 15 chi tiết máy sản xuất tính phương sai hiệu chỉnh 14.6 Với mức ý nghĩa 0.01 kết luận máy có hoạt động bình thường khơng, biết kích thước chi tiết biến ngẫu nhiên phân phối chuẩn có dung sai theo thiết kế 12  Giải: Gọi X kích thước chi tiết, theo giả thiết X phân phối chuẩn Bài toán kiểm định giả thuyết: H0: σ2= 12 H1: σ2 >12 2.7 Kiểm định giả thuyết thống kê 2.7.3 Kiểm định phương sai biến ngẫu nhiên phân phối chuẩn *2 ( n − ) S  Tiêu chuẩn kiểm định dạng: χ = σ 02 α = 0.01 → χα2(n-1) = χ0.012(14)= 29.14  Miền bác bỏ dạng: Wα={χ2> χ2α (n-1)} = {29.14;+∞}  Với mẫu cụ thể giá trị quan sát tiêu chuẩn kiểm *2 định: ( n − ) S (15 − 1)14.6 χ qs = = = 17.033 σ0 12  χ2qs khơng thuộc miền bác bỏ Wα={29.14;+∞} Khơng có sở bác bỏ giả thuyết H0, nói cách khác Máy hoạt động bình thường ... tiết gia công, hay sai số thiết bị  Trong quản trị kinh doanh phương sai đặc trưng cho mức độ rủi ro định đầu tư 2.3.2 Các tham số đặc trưng cho độ phân tán Phương sai  Các tính chất phương sai:... nhiên Hiệp phương sai  Đối với hệ hai biến ngẫu nhiên, tham số đặc trưng kỳ vọng phương sai thành phần hai tham số quan trọng Hiệp phương sai Hệ số tương quan  Hiệp phương sai: Hiệp phương sai... tính độ lệch chuẩn khơng dùng phương sai (Đơn vị đo phương sai bình phương đơn vị đo biến ngẫu nhiên)  Hệ số biến thiên: Hệ số biến thiên, ký hiệu CV, xác định theo công thức: CV=│σX/E(X)│(%) 

Ngày đăng: 21/10/2022, 14:19

HÌNH ẢNH LIÊN QUAN

 Bảng phân phối xác suất: - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
Bảng ph ân phối xác suất: (Trang 7)
 Bảng luật phân phối xác suất: - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
Bảng lu ật phân phối xác suất: (Trang 9)
 Hàm Φ0(u) được tra trong Bảng tính sẵn - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
m Φ0(u) được tra trong Bảng tính sẵn (Trang 49)
Tra Bảng giá trị tới hạn Student t0.005(14 )= 2.977 hoặc - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
ra Bảng giá trị tới hạn Student t0.005(14 )= 2.977 hoặc (Trang 81)
 Tra Bảng giá trị tới hạn χ 2: - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
ra Bảng giá trị tới hạn χ 2: (Trang 84)
bình mỗi gói là 72g. Cho kết luận về tình hình sản xuất với - Chapter 2- Phương pháp định lượng trong quản lý- Cô Hương - Đại học bách khoa HN
b ình mỗi gói là 72g. Cho kết luận về tình hình sản xuất với (Trang 100)