1. Trang chủ
  2. » Ngoại Ngữ

O Geometry Pythagorean Triples per Sierpinski page 8 10 31

3 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 62 KB

Nội dung

II O Geometry Pythagorean Triples (Sierpinski); Area = xy; more Pythagorean Triples per Sierpinski page and Proof of Right Triangle Area = xy “Every primitive Pythagorean triple (a, b, c) where b is an even integer is obtained only once per the following, where u and v are odd and u v: u  v2 u  v2 a  uv b c 2 Here, u and v represent all pairs of odd, relatively prime natural numbers.” Waclaw Sierpinski, Pythagorean Triangles, The Scripta Mathematics Studies Number Nine New York City: Graduate School of Science, Yeshiva University, 1962 **************************************************************** Proof of Right Triangle Area = xy Dr Stan Hartzler Archer City High School x x y r r r Area = y 1 r  perimeter = r (2r  x  y)  r ( r  x  y ) 2 ( x  r )2  ( y  r )2  ( x  y)2 x  xr  r  y  yr  r  x  xy  y 2 xr  r  yr  r  xy xr  2r  yr  xy xr  r  yr  xy r ( x  r  y )  xy  AREA II O Geometry Pythagorean Triples (Sierpinski); Area = xy; more Fun Relationships r a  b  c v (u  v )   2 x  xy  y  ( x  y ) v  uv x  ar  2 u  uv y br  a  xr  x  xy  y  x  y b  yr  x  xy  y  x  y c  x y Perimeter = a  b  c  2(r  x  y )  x  y  x  xy  y  uv  u Area = ab u v  uv  xy  Developing u, v for a given r Example: r = × × = 105 r uv  v v  2r v  210 = u  v v v 15 21 35 105 u 211 73 47 37 29 31 41 107 a 211 219 235 259 435 651 1435 11235 b 22260 2660 1092 660 308 260 228 212 c 22261 2669 1117 709 533 701 1453 11237 The number of distinct values of (u, v) for a given r of n odd prime factors is 2n And note that uk  vk  u2n 1k  v2n 1k II O Geometry Pythagorean Triples (Sierpinski); Area = xy; more ... values of (u, v) for a given r of n odd prime factors is 2n And note that uk  vk  u2n 1k  v2n 1k II O Geometry Pythagorean Triples (Sierpinski) ; Area = xy; more ... 35 105 u 211 73 47 37 29 31 41 107 a 211 219 235 259 435 651 1435 11235 b 22260 2660 109 2 660 3 08 260 2 28 212 c 22261 2669 1117 709 533 701 1453 11237 The number of distinct values of (u, v) for...II O Geometry Pythagorean Triples (Sierpinski) ; Area = xy; more Fun Relationships r a  b  c v (u  v )   2 x  xy  y  ( x  y )

Ngày đăng: 20/10/2022, 20:45

w