1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung

20 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 604,94 KB

Nội dung

“Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung” là tài liệu hữu ích giúp các em ôn tập cũng như hệ thống kiến thức môn học, giúp các em tự tin đạt điểm số cao trong kì thi tốt nghiệp THPT sắp tới. Mời các em cùng tham khảo đề thi.

TRƯỜNG CHUYÊN QUANG TRUNG ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 1  NĂM 2022  Bài thi: TOÁN Thời gian: 90 phút Câu 1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu 7 Câu 8 Câu 9 Câu 10 Câu 11 Câu 12 Câu 13 Trong không gian với hệ toạ độ , cho tam giác  với , ,  . Toạ độ trọng tâm  của tam giác  là A.  B.  C.  D.  Cho . Tính  A.  B.  C.  D.  Diện tích phần gạch chéo trong hình bên được tính theo cơng thức A.  B.  C.  D.  Trong không gian với hệ toạ độ  , cho mặt phẳng . Vec tơ nào dưới đây là một vec tơ  pháp   tuyến của ? A.  B.  C.  D.  Trong khơng gian với hệ toạ độ , mặt cầu . Bán kính mặt cầu đã cho bằng A.  B.  C.  D.  Cho  điểm phân biệt trên mặt phẳng. Hỏi có bao nhiêu véc­tơ  khác vecto khơng mà điểm   đầu và điểm cuối là  điểm đã cho A.  B.  C.  D.  Tập xác định  của hàm số  A.  B.  C.  D.  Cho mặt cầu có diện tích bằng . Khi đó, bán kính mặt cầu bằng A.  B.  C.  D.  Cho số phức  thỏa mãn . Tính tích phần thực và phần ảo của  A.  B.  C.  D.  Diện tích xung quanh của hình nón có độ dài đường sinh  và bán kính đáy  bằng A.  B.  C.  D.  Đồ thị hàm số  có số đường tiệm cận đứng là bao nhiêu? A.  B.  C.  D.  Cho hình trụ có bán kính đáy  và độ  dài đường sinh . Diện tích xung quanh của hình trụ  đã   cho bằng A.  B.  C.  D.  Cho số phức . Số phức liên hợp của số phức  là A.  B.  C.  D.  Câu 14 Cho hàm số  có bảng biến thiên như hình vẽ bên dưới Hàm số  đồng biến trên khoảng nào dưới đây? A.  B.  C.  Câu 15 Cho hàm số  có bảng biến thiên như sau Câu 16 Câu 17 Câu 18 Câu 19 Câu 20 Câu 21 Câu 22 Câu 23 Câu 24 D.  Đồ thị hàm số  có tổng bao nhiêu tiệm cận (chỉ xét các tiệm cận đứng và ngang)? A.  B.  C.  D.  Cho hai đường thẳng  và mặt phẳng .Trong các mệnh đề sau mệnh đề nào sai? A. Nếu  và  thì  B. Nếu  và  thì  C. Nếu  và  thì  hoặc  D. Nếu  và  thì  Gọi là giá trị nhỏ nhất và  là giá trị lớn nhất của hàm số  trên đoạn . Khi đó giá trị  bằng A.  B.  C.  D.  Bất phương trình  có tập nghiệm là A.  B.  C.  D.  Trong mặt phẳng tọa độ biết  là điểm biểu diễn số phức , phần thực của  bằng A.  B.  C.  D.  Phần ảo của số phức  bằng A.  B.  C.  D.  Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách chọn ra một học sinh của  lớp 10A để làm lớp trưởng? A.  B.  C.  D.  Trong khơng gian , tìm điểm dưới đây thuộc đường thẳng  A.  B.  C.  D.  Mệnh đề nào sau đây sai? A. ( với  là hằng số và ) B. Nếu  và  đều là ngun hàm của hàm số  thì  C. Nếu  thì  D.  Cho hình chóp đều có đáy là hình vng cạnh  cạnh bên . Thể tích của khối chóp  bằng: A.  B.  C.  D.  Câu 25 Cho hình chóp  có đáy là hình vng cạnh  và  vng góc với đáy. Góc giữa cạnh  và đáy  bằng: A.  B.  C.  D.  Câu 26 Có một vật thể hình trịn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta   đo được đường kính của miệng ly là  và chiều cao . Biết rằng thiết diện của chiếc ly cắt   bởi mặt phẳng đối xứng là một parabol. Thể tích  của vật thể đã cho Câu 27 Câu 28 Câu 29 Câu 30 Câu 31 A.  B.  C.  D.  Cho  và  là hai số thực dương. Trong các mệnh đề dưới đây, mệnh đề nào sai? A.  B.  C.  D.  Trong khơng gian với hệ trục tọa độ  cho hai vectơ  Phát biểu nào sau đây là sai? A.  B.  C.  ngược hướng với  D.  Cho phương trình . Tổng các nghiệm của phương trình là A.  B.  C.  D.  Trong khơng gian  tính khoảng cách từ  đến mặt phẳng  A.  B.  C.  D.  Cho hai hàm số ,  với ,  là hai số thực dương, khác , có đồ thị lần lượt như hình vẽ. Khẳng   định nào sau đây sai? A.  B.  C.  D.  Câu 32 Cho hàm số  có đồ thị như hình vẽ bên dưới. Tính giá trị của biểu thức  A.  B.  C.  D.  Câu 33 Cho hàm số  có đạo hàm  trên . Tính số điểm cực trị của hàm số  A.  B.  C.  D.  Câu 34 Cho ,  là các số thực dương khác  thỏa mãn . Giá trị của  A.  B.  C.  D.  Câu 35 Điểm  trong hình vẽ bên biểu diễn cho số phức . Mệnh đề nào sau đây đúng? Câu 36 Câu 37 Câu 38 Câu 39 A. Phần thực là , phần ảo là  B. Phần thực là , phần ảo là  C. Phần thực là , phần ảo là  D. Phần thực là , phần ảo là  Trong khơng gian với hệ toạ độ , cho ;  và mặt phẳng . Mặt phẳng  chứa  và vng góc với   mặt phẳng . Mặt phẳng  có phương trình là A.  B.  C.  D.  Trong khơng gian với hệ toạ độ  , cho điểm  và đường thẳng . Đường thẳng đi qua , vng  góc với  và cắt  có phương trình là A.  B.  C.  D.  Trong khơng gian với hệ  toạ  độ  , cho hai điểm ,  và đường thẳng . Gọi  là điểm di động  thuộc mặt phẳng  sao cho  và  là điểm di động thuộc . Tìm giá trị nhỏ nhất của  A.  B.  C.  D.  Trong khơng gian với hệ tọa độ , cho điểm  và hai mặt phẳng . Phương trình nào dưới đây là   phương trình đường thẳng đi qua , song song với  và  A.  B.  C.  D.  Câu 40 Cho hàm số  có đạo hàm  với mọi . Hàm số  có nhiều nhất bao nhiêu điểm cực trị A.  B.  C.  D.  Câu 41 Ba bạn Chuyên, Quang, Trung mỗi bạn viết ngẫu nhiên lên bảng một số  tự  nhiên thuộc    Xác suất để ba số được biết ra có tổng chia hết cho 3 bằng: A.  B.  C.  D.  Câu 42 Tìm các giá trị ngun của tham số  để hàm số  nghịch biến trên  A.  B.  C.  D.  Câu 43 Cho hàm số   có đạo hàm là hàm . Đồ thị hàm số  được cho như hình vẽ. Biết rằng . Giá trị  nhỏ nhất và giá trị lớn nhất của  trên đoạn  lần lượt là A.  B.  C.  D.  Câu 44 Phương trình  có bao nhiêu nghiệm trong khoảng ? A. 2020 nghiệm B. 2021 nghiệm C. 1011 nghiệm D. 2022 nghiệm Câu 45 Cho  là một ngun hàm của . Tìm họ ngun hàm của hàm số  A.  B.  C.  D.  Câu 46 Cho hình chóp  có đáy  là hình chữ  nhật, mặt bên  là tam giác đều cạnh  và nằm trong mặt  phẳng vng góc với mặt phẳng đáy. Tính thể tích khối chóp  biết rằng mặt phẳng  tạo với   mặt phẳng đáy một góc  A.  B.  C.  D.  Câu 47 Cho hàm số  với  là các tham số thực thỏa mãn: . Tìm số cực trị của hàm số  A.  B.  C.  D.  Câu 48 Cho các hàm số  và  liên tục trên mỗi khoảng xác định của chúng và có bảng biến thiên được   cho như hình vẽ dưới đây         Mệnh đề nào sau đây sai? A. Phương trình  khơng có nghiệm B. Phương trình  có nghiệm với mọi  C. Phương trình  khơng có nghiệm thuộc khoảng  D. Phương trình  có nghiệm với mọi  Câu 49 Cho . Giá trị  bằng A.  B.  C.  D.  Câu 50 Cho hình hộp  có thể tích . Gọi  lần lượt là tâm các mặt bên . Gọi  là thể tích khối đa diện    Tỷ số  bằng A.  B.  C.  D.  ­­­­­­­­­­ HẾT ­­­­­­­­­­ HƯỚNG DẪN GIẢI CHI TIẾT Câu 1 Trong không gian với hệ toạ độ , cho tam giác  với , , . Toạ độ trọng tâm  của tam giác  là A.  B.  C.  D.  Lời giải Chọn C Ta có  Câu 2 Cho . Tính  A.  B.  C.  Lời giải D.  Chọn C Đặt  Đổi cận Khi đó Câu 3 Diện tích phần gạch chéo trong hình bên được tính theo cơng thức A.  C.  B.  D.  Lời giải Chọn B Lý thuyết Câu 4 Trong không gian với hệ toạ độ  , cho mặt phẳng . Vec tơ nào dưới đây là một vec tơ  pháp   tuyến của ? A.  B.  C.  D.  Lời giải Chọn C Lý thuyết Câu 5 Trong khơng gian với hệ toạ độ , mặt cầu . Bán kính mặt cầu đã cho bằng A.  B.  C.  D.  Lời giải Chọn A Ta có  Câu 6 Cho  điểm phân biệt trên mặt phẳng. Hỏi có bao nhiêu véc­tơ  khác vecto khơng mà điểm   đầu và điểm cuối là  điểm đã cho A.  B.  C.  D.  Lời giải Chọn A Câu 7 Số vectơ có điểm đầu và điểm cuối tạo từ  điểm đã cho là  Tập xác định  của hàm số  A.  B.  C.  D.  Lời giải Chọn C Câu 8 Tập xác định  của hàm số  là  Cho mặt cầu có diện tích bằng . Khi đó, bán kính mặt cầu bằng A.  B.  C.  D.  Lời giải Chọn D Câu 9 Có  Cho số phức  thỏa mãn . Tính tích phần thực và phần ảo của  A.  B.  C.  D.  Lời giải Chọn B Gọi  Câu 10 Diện tích xung quanh của hình nón có độ dài đường sinh  và bán kính đáy  bằng A.  B.  C.  D.  Lời giải Chọn C Diện tích xung quanh của hình nón có độ dài đường sinh  và bán kính đáy  bằng  Câu 11 Đồ thị hàm số  có số đường tiệm cận đứng là bao nhiêu? A.  B.  C.  D.  Lời giải Chọn A Điều kiện:  Ta có:  Tương tự:  Vậy hàm số có 1 đường tiệm cận đứng là  Câu 12 Cho hình trụ có bán kính đáy  và độ  dài đường sinh . Diện tích xung quanh của hình trụ  đã   cho bằng A.  B.  C.  D.  Lời giải Chọn B Ta có:  Câu 13 Cho số phức . Số phức liên hợp của số phức  là A.  B.  C.  Lời giải Chọn C Câu 14 Cho hàm số  có bảng biến thiên như hình vẽ bên dưới Hàm số  đồng biến trên khoảng nào dưới đây? A.  B.  C.  Lời giải Chọn B D.  D.  Theo bảng biến thiên ta có hàm số đồng biến trên các khoảng  và  Vậy hàm số đồng biến trên Câu 15 Cho hàm số  có bảng biến thiên như sau Đồ thị hàm số  có tổng bao nhiêu tiệm cận (chỉ xét các tiệm cận đứng và ngang)? A.  B.  C.  D.  Lời giải Chọn B Theo bảng biến thiên ta có:  là tiệm cận đứng của đồ thị hàm số Theo bảng biến thiên ta có:  là tiệm cận ngang của đồ thị hàm số Vậy đồ thị hàm số có  đường tiệm cận (xét các đường tiệm cận đứng và ngang) Câu 16 Cho hai đường thẳng  và mặt phẳng .Trong các mệnh đề sau mệnh đề nào sai? A. Nếu  và  thì  B. Nếu  và  thì  C. Nếu  và  thì  hoặc  D. Nếu  và  thì  Lời giải Chọn D Phương án sai là  Câu 17 Gọi là giá trị nhỏ nhất và  là giá trị lớn nhất của hàm số  trên đoạn . Khi đó giá trị  bằng A.  B.  C.  D.  Lời giải Chọn B Ta có:  +)  Vậy ,  Câu 18 Bất phương trình  có tập nghiệm là A.  B.  C.  Lời giải D.  Chọn D Câu 19 Trong mặt phẳng tọa độ biết  là điểm biểu diễn số phức , phần thực của  bằng A.  B.  C.  D.  Lời giải Chọn A Phần thực của số phức  bằng:  Câu 20 Phần ảo của số phức  bằng A.  B.  C.  Lời giải D.  Chọn B Phần ảo của số phức  bằng:  Câu 21 Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách chọn ra một học sinh của  lớp 10A để làm lớp trưởng? A.  B.  C.  D.  Lời giải Chọn C Số cách chọn ra một học sinh của lớp 10A để làm lớp trưởng là:  Câu 22 Trong khơng gian , tìm điểm dưới đây thuộc đường thẳng  A.  B.  C.  D.  Lời giải Chọn B Câu 23 Mệnh đề nào sau đây sai? A. ( với  là hằng số và ) B. Nếu  và  đều là ngun hàm của hàm số  thì  C. Nếu  thì  D.  Lời giải Chọn B Câu 24 Cho hình chóp đều có đáy là hình vng cạnh  cạnh bên . Thể tích của khối chóp  bằng: A.  B.  C.  D.  Lời giải Chọn D Ta có:  Câu 25 Cho hình chóp  có đáy là hình vng cạnh  và  vng góc với đáy. Góc giữa cạnh  và đáy  bằng: A.  B.  C.  D.  Lời giải Chọn B Ta có , suy ra góc giữa  và mp  bằng góc  Lại có , suy ra tam giác  vng cân tại A  Câu 26 Có một vật thể hình trịn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta   đo được đường kính của miệng ly là  và chiều cao . Biết rằng thiết diện của chiếc ly cắt   bởi mặt phẳng đối xứng là một parabol. Thể tích  của vật thể đã cho A.  B.  C.  Lời giải D.  Chọn A Xét phương trình parabol  Ta thấy  Khi đó  Ta có thể tích của vật thể đã cho là:  Câu 27 Cho  và  là hai số thực dương. Trong các mệnh đề dưới đây, mệnh đề nào sai? A.  B.  C.  D.  Lời giải Chọn D Ta có  Câu 28 Trong khơng gian với hệ trục tọa độ  cho hai vectơ  Phát biểu nào sau đây là sai? A.  B.  C.  ngược hướng với  D.  Lời giải Chọn B Ta có:  ngược hướng với  và  Câu 29 Cho phương trình . Tổng các nghiệm của phương trình là A.  B.  C.  Lời giải D.  Chọn C Đkxđ:  So sánh điều kiện suy ra phương trình có các nghiệm  Tổng các nghiệm của phương trình là  Câu 30 Trong khơng gian  tính khoảng cách từ  đến mặt phẳng  A.  B.  C.  Lời giải D.  Chọn D Câu 31 Cho hai hàm số ,  với ,  là hai số thực dương, khác , có đồ thị lần lượt như hình vẽ. Khẳng   định nào sau đây sai? A.  B.  C.  D.  Lời giải Chọn D Dễ thấy đồ thị hàm số  đồng biến nên , Đồ thị hàm số  nghịch biến nên  Do vậy  Câu 32 Cho hàm số  có đồ thị như hình vẽ bên dưới. Tính giá trị của biểu thức  A.  B.  C.  D.  Lời giải Chọn B Đồ thị hàm số có tiệm cận ngang  Đồ thị hàm số có tiệm cận đứng  Đồ thị hàm số đi qua điểm  nên  Vậy  Câu 33 Cho hàm số  có đạo hàm  trên . Tính số điểm cực trị của hàm số  A.  B.  C.  D.  Lời giải Chọn B Ta có  Khi đó  với  là nghiệm kép Bảng xét dấu  Dựa vào bảng xét dấu, ta thấy hàm số đã cho có  điểm cực trị Câu 34 Cho ,  là các số thực dương khác  thỏa mãn . Giá trị của  A.  B.  C.  D.  Lời giải Chọn D Ta có  Khi đó  Câu 35 Điểm  trong hình vẽ bên biểu diễn cho số phức . Mệnh đề nào sau đây đúng? A. Phần thực là , phần ảo là  B. Phần thực là , phần ảo là  C. Phần thực là , phần ảo là  D. Phần thực là , phần ảo là  Lời giải Chọn B Dựa vào hình vẽ, ta có số phức  nên chọn B Câu 36 Trong khơng gian với hệ toạ độ , cho ;  và mặt phẳng . Mặt phẳng  chứa  và vng góc với   mặt phẳng . Mặt phẳng  có phương trình là A.  B.  C.  D.  Lời giải Chọn D Ta có  và mặt phẳng  có 1 vectơ pháp tuyến là  Suy ra  là một vectơ pháp tuyến của mặt phẳng  (vì mặt phẳng  chứa  và vng góc với mặt  phẳng ) Phương trình mặt phẳng  là  Câu 37 Trong khơng gian với hệ toạ độ  , cho điểm  và đường thẳng . Đường thẳng đi qua , vng  góc với  và cắt  có phương trình là A.  B.  C.  D.  Lời giải Chọn A Gọi đường thẳng đi qua , vng góc với  và cắt  là  Giả sử  Ta có  là một vectơ chỉ phương của  Đường thẳng  có 1 vectơ chỉ phương là  Vì  Do  là một vectơ chỉ phương của  nên  cũng là một vectơ chỉ phương của  Mà đường thẳng  đi qua  nên có phương trình  Câu 38 Trong khơng gian với hệ  toạ  độ  , cho hai điểm ,  và đường thẳng . Gọi  là điểm di động  thuộc mặt phẳng  sao cho  và  là điểm di động thuộc . Tìm giá trị nhỏ nhất của  A.  B.  C.  D.  Lời giải Chọn D Ta có điểm  là điểm di động thuộc mặt phẳng  sao cho nên  thuộc giao của mặt cầu  đường  kính  và mặt phẳng  Ta có mặt cầu  đường kính  có tâm  bán kính  nên có phương trình  Mặt phẳng   có phương trình   có 1 vectơ  pháp tuyến   và cũng là 1 vectơ  chỉ  phương của   đường thẳng  nên   Gọi  là hình chiếu vng góc của tâm mặt cầu  lên mặt phẳng  Mà điểm  thuộc giao của mặt cầu  và mặt phẳng  nên thuộc đường trịn  tâm  bán kính  Lại có điểm  là điểm di động thuộc  nên  Vậy giá trị nhỏ nhất của  bằng  Câu 39 Trong khơng gian với hệ tọa độ , cho điểm  và hai mặt phẳng . Phương trình nào dưới đây là   phương trình đường thẳng đi qua , song song với  và  A.  B.  C.  D.  Lời giải Chọn B Ta có véc tơ pháp tuyến của  và  lần lượt là  và  Gọi  là một véc tơ chỉ phương của đường thẳng  song song với  và  Suy ra  Chọn  là véc tơ chỉ phương của đường thẳng  Vậy phương trình đường thẳng  là  Câu 40 Cho hàm số  có đạo hàm  với mọi . Hàm số  có nhiều nhất bao nhiêu điểm cực trị A.  B.  C.  D.  Lời giải Chọn C Ta có   Suy ra hàm số  có  cực trị Đặt  Ta có  . Suy ra hàm số  có  cực trị Quan sát bảng biến thiên sau Ta thấy phương trình  có tối đa  nghiệm Vậy hàm số  có tối đa  cực trị Câu 41 Ba bạn Chuyên, Quang, Trung mỗi bạn viết ngẫu nhiên lên bảng một số  tự  nhiên thuộc    Xác suất để ba số được biết ra có tổng chia hết cho 3 bằng: A.  B.  C.  D.  Lời giải Chọn C Gọi  là khơng gian mẫu  Gọi  là biến cố: “ba số được biết ra có tổng chia hết cho 3” Từ  đến  có  số chia cho  dư ,  số chia cho  dư  và  số chia hết cho  TH1: Ba bạn chọn được  số chia hết cho  có  cách TH2: Ba bạn chọn được  số chia cho  dư  có  cách TH3: Ba bạn chọn được  số chia cho  dư  có  cách TH4: Một bạn được 1 số chia hết cho , một bạn chọn được 1 số  số  chia cho  dư   và một   bạn chọn được 1 số số chia cho  dư  có  cách Câu 42 Tìm các giá trị ngun của tham số  để hàm số  nghịch biến trên  A.  B.  C.  D.  Lời giải Chọn A Ta có  Để hàm số nghịch biến trên   Câu 43 Cho hàm số   có đạo hàm là hàm . Đồ thị hàm số  được cho như hình vẽ. Biết rằng . Giá trị  nhỏ nhất và giá trị lớn nhất của  trên đoạn  lần lượt là A.  B.  C.  D.  Lời giải Chọn B Từ đồ thị hàm số  ta có BBT của hàm số  trên đoạn  như sau: Suy ra:  và , mà  nên  Vậy: ;  Câu 44 Phương trình  có bao nhiêu nghiệm trong khoảng ? A. 2020 nghiệm B. 2021 nghiệm C. 1011 nghiệm Lời giải Chọn C ĐKXĐ:  Đặt , ta được: , với  là hàm số đồng biến trên  Suy ra: . Thay vào  ta được:  Mà  nên:  Suy ra:  D. 2022 nghiệm Vậy phương trình đã cho có 1011 nghiệm trong khoảng  Câu 45 Cho  là một ngun hàm của . Tìm họ ngun hàm của hàm số  A.  B.  C.  D.  Lời giải Chọn C Ta có , khi đó  Vậy  Câu 46 Cho hình chóp  có đáy  là hình chữ  nhật, mặt bên  là tam giác đều cạnh  và nằm trong mặt  phẳng vng góc với mặt phẳng đáy. Tính thể tích khối chóp  biết rằng mặt phẳng  tạo với   mặt phẳng đáy một góc  A.  B.  C.  D.  Lời giải Chọn C Gọi  là trung điểm , ta có ,  nên  và  Gọi  là trung điểm của , ta có  Vậy , suy ra  Khi đó  Câu 47 Cho hàm số  với  là các tham số thực thỏa mãn: . Tìm số cực trị của hàm số  A.  B.  C.  D.  Lời giải Chọn D Ta có:  và  Khi đó đồ thị hàm số  có dạng như sau: => Đồ thị có dạng: Vậy số cực trị của hàm số là 11.  Câu 48 Cho các hàm số  và  liên tục trên mỗi khoảng xác định của chúng và có bảng biến thiên được   cho như hình vẽ dưới đây            Mệnh đề nào sau đây sai? A. Phương trình  khơng có nghiệm B. Phương trình  có nghiệm với mọi  C. Phương trình  khơng có nghiệm thuộc khoảng  D. Phương trình  có nghiệm với mọi  Lời giải Chọn A Dựa vào bảng biến thiên ta có:  Từ đó nhận thấy phương trình  có nghiệm với mọi  Dựa vào bảng biến thiên thì phương trình  hồn tồn có thể có nghiệm  nên mệnh đề A sai Câu 49 Cho . Giá trị  bằng A.  B.  C.  D.  Lời giải Chọn A Ta có  Câu 50 Cho hình hộp  có thể tích . Gọi  lần lượt là tâm các mặt bên . Gọi  là thể tích khối đa diện    Tỷ số  bằng A.  B.  C.  D.  Lời giải Chọn B Ta có ;  Mặt khác,  Do vậy, ta được:  ­­­­­­­­­­ HẾT ­­­­­­­­­­ ...Câu? ?14 Cho hàm số ? ?có? ?bảng biến? ?thi? ?n như hình vẽ bên dưới Hàm số  đồng biến trên khoảng nào dưới đây? A.  B.  C.  Câu? ?15 Cho hàm số ? ?có? ?bảng biến? ?thi? ?n như sau Câu? ?16 Câu? ?17 Câu? ?18 Câu? ?19 Câu 20... Diện tích xung quanh của hình nón? ?có? ?độ dài đường sinh  và bán kính đáy  bằng  Câu? ?11 Đồ thị hàm số ? ?có? ?số đường tiệm cận đứng là bao nhiêu? A.  B.  C.  D.  Lời giải Chọn A Điều kiện:  Ta? ?có:   Tương tự:  Vậy hàm số? ?có? ?1? ?đường tiệm cận đứng là ... nhỏ nhất và giá trị lớn nhất của  trên đoạn ? ?lần? ?lượt là A.  B.  C.  D.  Câu 44 Phương trình ? ?có? ?bao nhiêu nghiệm trong khoảng ? A. 2020 nghiệm B. 20 21? ?nghiệm C.? ?10 11? ?nghiệm D.? ?2022? ?nghiệm Câu 45 Cho  là một ngun hàm của . Tìm họ ngun hàm của hàm số 

Ngày đăng: 18/10/2022, 23:42

HÌNH ẢNH LIÊN QUAN

Câu 14. Cho hàm s  ố  có b ng bi n thiên nh  hình v  bên d ưẽ ưới. - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 14. Cho hàm s  ố  có b ng bi n thiên nh  hình v  bên d ưẽ ưới (Trang 2)
Câu 24. Cho hình chóp đ u  ề có đáy là hình vng c nh  c nh bên . Th  tích c a kh i chóp  b ng: ằ - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 24. Cho hình chóp đ u  ề có đáy là hình vng c nh  c nh bên . Th  tích c a kh i chóp  b ng: ằ (Trang 2)
Câu 26. Có m t v t th  hình trịn xoay có d ng gi ng nh  m t cái ly nh  hình v  d ưẽ ướ i đây. Ng ườ i ta   đo được đường kính c a mi ng ly là ủệ và chi u cao . Bi t r ng thi t di n c a chi c ly c tềế ằếệủếắ  b i m t ph ng đ i x ng là m t parabol. Th  tích - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 26. Có m t v t th  hình trịn xoay có d ng gi ng nh  m t cái ly nh  hình v  d ưẽ ướ i đây. Ng ườ i ta   đo được đường kính c a mi ng ly là ủệ và chi u cao . Bi t r ng thi t di n c a chi c ly c tềế ằếệủếắ  b i m t ph ng đ i x ng là m t parabol. Th  tích (Trang 3)
Câu 35. Đi m  trong hình v  bên bi u di n cho s  ph c . M nh đ  nào sau đây đúng? ề - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 35. Đi m  trong hình v  bên bi u di n cho s  ph c . M nh đ  nào sau đây đúng? ề (Trang 4)
Câu 43. Cho hàm s  ố  có đ o hàm là hàm . Đ  th  hàm s   đ ịố ượ c cho nh  hình v . Bi t r ng . Giá tr ếằ ị  nh  nh t và giá tr  l n nh t c a  trên đo n  l n lỏấị ớấ ủạầ ượt là - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 43. Cho hàm s  ố  có đ o hàm là hàm . Đ  th  hàm s   đ ịố ượ c cho nh  hình v . Bi t r ng . Giá tr ếằ ị  nh  nh t và giá tr  l n nh t c a  trên đo n  l n lỏấị ớấ ủạầ ượt là (Trang 5)
Câu 10. Di n tích xung quanh c a hình nón có đ  dài đ ủộ ườ ng sinh  và bán kính đáy  b ng ằ - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 10. Di n tích xung quanh c a hình nón có đ  dài đ ủộ ườ ng sinh  và bán kính đáy  b ng ằ (Trang 8)
Câu 14. Cho hàm s  ố  có b ng bi n thiên nh  hình v  bên d ưẽ ưới. - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 14. Cho hàm s  ố  có b ng bi n thiên nh  hình v  bên d ưẽ ưới (Trang 9)
Câu 24. Cho hình chóp đ u  ề có đáy là hình vng c nh  c nh bên . Th  tích c a kh i chóp  b ng: ằ - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 24. Cho hình chóp đ u  ề có đáy là hình vng c nh  c nh bên . Th  tích c a kh i chóp  b ng: ằ (Trang 11)
Câu 31. Cho hai hàm s  ,  v i ,  là hai s  th c d ốự ươ ng, khác , có đ  th  l n l ịầ ượ t nh  hình v . Kh ngư ẳ  đ nh nào sau đây ịsai? - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 31. Cho hai hàm s  ,  v i ,  là hai s  th c d ốự ươ ng, khác , có đ  th  l n l ịầ ượ t nh  hình v . Kh ngư ẳ  đ nh nào sau đây ịsai? (Trang 13)
Câu 35. Đi m  trong hình v  bên bi u di n cho s  ph c . M nh đ  nào sau đây đúng? ề - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 35. Đi m  trong hình v  bên bi u di n cho s  ph c . M nh đ  nào sau đây đúng? ề (Trang 14)
D a vào hình v , ta có s  ph c  nên ch n. ứọ B. - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
a vào hình v , ta có s  ph c  nên ch n. ứọ B (Trang 15)
G i  là hình chi u vng góc c a tâm m t c u  lên m t ph ng . ẳ - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
i  là hình chi u vng góc c a tâm m t c u  lên m t ph ng . ẳ (Trang 16)
Câu 43. Cho hàm s  ố  có đ o hàm là hàm . Đ  th  hàm s   đ ịố ượ c cho nh  hình v . Bi t r ng . Giá tr ếằ ị  nh  nh t và giá tr  l n nh t c a  trên đo n  l n lỏấị ớấ ủạầ ượt là - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 43. Cho hàm s  ố  có đ o hàm là hàm . Đ  th  hàm s   đ ịố ượ c cho nh  hình v . Bi t r ng . Giá tr ếằ ị  nh  nh t và giá tr  l n nh t c a  trên đo n  l n lỏấị ớấ ủạầ ượt là (Trang 17)
Câu 46. Cho hình chóp  có đáy  là hình ch  nh t, m t bên  là tam giác đ u c nh  và n m trong m ặ  ph ng vng góc v i m t ph ng đáy. Tính th  tích kh i chóp  bi t r ng m t ph ng  t o v iẳớặẳểốế ằặẳạớ  m t ph ng đáy m t góc .ặẳộ - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 46. Cho hình chóp  có đáy  là hình ch  nh t, m t bên  là tam giác đ u c nh  và n m trong m ặ  ph ng vng góc v i m t ph ng đáy. Tính th  tích kh i chóp  bi t r ng m t ph ng  t o v iẳớặẳểốế ằặẳạớ  m t ph ng đáy m t góc .ặẳộ (Trang 18)
Câu 50. Cho hình h p  có th  tích . G i  l n l ọầ ượ t là tâm các m t bên . G i  là th  tích kh i đa di n  - Đề thi thử tốt nghiệp THPT QG môn Toán năm 2022 lần 1 có đáp án - Trường THPT chuyên Quang Trung
u 50. Cho hình h p  có th  tích . G i  l n l ọầ ượ t là tâm các m t bên . G i  là th  tích kh i đa di n  (Trang 20)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN