1. Trang chủ
  2. » Thể loại khác

Building high-level features using large-scale unsupervised learning

41 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Building High-Level Features Using Large-Scale Unsupervised Learning
Tác giả Anh Nguyen, Bay-yuan Hsu
Người hướng dẫn Andrew Ng, Nando De Freitas
Trường học University of California, Santa Barbara
Chuyên ngành Data Mining
Thể loại Slide
Năm xuất bản 2014
Thành phố Santa Barbara
Định dạng
Số trang 41
Dung lượng 5,36 MB

Nội dung

Building high-level features using large-scale unsupervised learning Anh Nguyen, Bay-yuan Hsu CS290D – Data Mining (Spring 2014) University of California, Santa Barbara Slide adapted from Andrew Ng (Stanford), Nando de Freitas (UBC) Agenda Motivation Approach Sparse Deep Auto-encoder Local Receptive Field L2 Pooling Local contrast normalization Overall Model Parallelism Evaluation Discussion Motivation Motivation • Feature learning • Supervised learning • Need large number of labeled data • Unsupervised learning • Example: Build face detector without having labeled face images • Building high-level features using unlabeled data Motivation • Previous works • Auto encoder • Sparse coding • Result: Only learns low level features • Reason: Computational constraints • Approach • Dataset • Model • Computational resources Approach Sparse Deep Auto-encoder • Auto-encoder • Neural network • Unsupervised learning • Back-propagation Sparse Deep Auto-encoder (cnt’d) • Sparse Coding • Input: Images x(1), x(2) x(m) • Learn: Bases (features) f1, f2, , fk, so that each input x can be approximately decomposed as: x=∑ajfj s.t aj’s are mostly zero (“sparse”) Sparse Deep Auto-encoder (cnt’d) Sparse Deep Auto-encoder (cnt’d) • Sparse Coding • Regularizer 10 27 28 Model Parallelism • Weights divided according to locality of image and store on different machine 29 evaluation 30 Evaluation • 10M Youtube unlabeled frames of size 200x200 • 1B parameters • 1000 machines • 16,000 cores 31 Experiment on Faces • Test set • 37,000 images • 13,026 face images • Best neuron 32 Experiment on Faces (cnt’d) • Visualization • Top stimulus (images) for face neuron • Optimal stimulus for face neuron 33 Experiment on Faces (cnt’d) • Invariances Properties 34 Experiment on Faces (cnt’d) • Invariances Properties 35 Experiment on Cat/Human body • Test set • Cat: 10,000 positive, 18,409 negative • Human body: 13,026 positive, 23,974 negative • Accuracy 36 ImageNet classification • Recognizing images • Dataset • 20,000 categories • 14M images • Accuracy • 15.8% • State of art: 9.3% 37 DISCUSSION 38 Discussion • Deep learning • Unsupervised feature learning • Learning multiple layers of representation • Increase accuracy: Invariance, contrast normalization • Scalability 39 REFERENCES 40 References Quoc Le et al., “Building High-level Features using Large Scale Unsupervised Learning” Nando de Freitas, “Deep Learning”, URL: https://www.youtube.com/watch? v=g4ZmJJWR34Q Andrew Ng, “Sparse autoencoder”, URL: http://www.stanford.edu/class/archive/cs/cs294a/cs294a.1104/sparseAutoencode r.pdf Andrew Ng, “Machine Learning and AI via Brain Simulations”, URL: https://forum.stanford.edu/events/2011slides/plenary/2011plenaryNg.pdf Andrew Ng, “Deep Learning”, URL: http://www.ipam.ucla.edu/publications/gss2012/gss2012_10595.pdf 41 ... Computational resources Approach Sparse Deep Auto-encoder • Auto-encoder • Neural network • Unsupervised learning • Back-propagation Sparse Deep Auto-encoder (cnt’d) • Sparse Coding • Input: Images... zero (“sparse”) Sparse Deep Auto-encoder (cnt’d) Sparse Deep Auto-encoder (cnt’d) • Sparse Coding • Regularizer 10 Sparse Deep Auto-encoder (cnt’d) • Sparse Deep Auto-encoder • Multiple hidden layers...Agenda Motivation Approach Sparse Deep Auto-encoder Local Receptive Field L2 Pooling Local contrast normalization Overall Model Parallelism

Ngày đăng: 11/10/2022, 02:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w