Tài liệu tham khảo |
Loại |
Chi tiết |
[1] Iannizzotto A, Liu S-B, Perera K. Existence results for fractional p-Laplacian problems via Morse theory. Adv Calc Var. 2016;9:101–125 |
Sách, tạp chí |
|
[4] Barile S, Figueiredo G-M. Existence of a least energy nodal solution for a class of p&q- quasilinear elliptic equations. Adv Nonlinear Stud. 2014;14(2):511–530 |
Sách, tạp chí |
|
[5] Cherfils L, Il’yasov V. On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun Pure Appl Anal. 2004;1(4):1–14 |
Sách, tạp chí |
|
[6] Corrêa F-J-S-A, Corrêa A-S-S, Figueiredo G-M. Positive solution for a class of p&q-singular elliptic equation. Nonlinear Anal Real World Appl. 2014;16:163–169 |
Sách, tạp chí |
|
[7] Figueiredo G-M. Existence of positive solutions for a class of p&q elliptic problems with critical growth on R N . J Math Anal Appl. 2011;378:507–518 |
Sách, tạp chí |
Tiêu đề: |
p&q"elliptic problems with criticalgrowth onR"N |
|
[8] Li G-B, Liang X. The existence of nontrivial solutions to nonlinear elliptic equation of p&q- Laplacian type on R N . Nonlinear Anal. 2009;71:2316–2334 |
Sách, tạp chí |
Tiêu đề: |
p&q"-Laplacian type onR"N |
|
[10] Ambrosio V, Isernia T. On a fractional p&q Laplacian problem with critical Sobolev-Hardy exponents. Mediterr J Math. 2018;15:219 |
Sách, tạp chí |
|
[12] Barile S, Figueiredo G-M. Existence of a least energy nodal solution for a class of p&q- quasilinear elliptic equations. Adv Nonlinear Stud. 2014;14(2):511–530 |
Sách, tạp chí |
|
[26] Thin N-V, Thuy P-T. On existence solution for Schrửdinger-Kirchhoff type equations involving the fractional p-Laplacian in R N . Complex Var Elliptic Equ. 2019;64:461–481 |
Sách, tạp chí |
Tiêu đề: |
p"-Laplacian inR"N |
|
[27] Bhakta M, Mukherjee D. Multiplicity results for ( p, q ) fractional elliptic equations involving critical nonlinearities. Adv Differ Equ. 2019;24(3–4):185–228 |
Sách, tạp chí |
|
[29] Mirzaee H. Multiple solutions for a fractional p-Kirchhoff problem with subcritical and critical Hardy-Sobolev exponent. Rocky Mountain J Math. 2018;48(6):2023–2054 |
Sách, tạp chí |
|
[41] Xiang M, Zhang B, Ferrara M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J Math Anal Appl. 2015;424:1021–1041 |
Sách, tạp chí |
|
[47] Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrửdinger-Kirchhoff type equations involving the fractional p-Laplacian in R N . Calc Var Partial Differ Equ. 2015;54:2785–2806 |
Sách, tạp chí |
Tiêu đề: |
p"-Laplacian inR"N |
|
[50] Lia Q, Yang Z. Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in R N . Complex Var Elliptic Equ. 2016;61:969–983 |
Sách, tạp chí |
|
[2] Lindgren E, Lindqvist P. Fractional eigenvalues. Calc Var Partial Differ Equ. 2014;49:795–826 |
Khác |
|
[3] Chen W, Mosconi S, Squassina M. Nonlocal problems with critical Hardy nonlinearity. J Funct Anal. 2018;275(11):3065–3114 |
Khác |
|
[9] Zhang J, Hsu T-S. Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Taiwan J Math. 2019;23(6):1479–1510 |
Khác |
|
[11] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Funct Anal. 2005;225:352–370 |
Khác |
|
[13] Fiscella A, Pucci P. On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems. Adv Differ Equ. 2016;21(5-6):571–599 |
Khác |
|
[14] Fiscella A, Pucci P. Kirchhoff-Hardy fractional problems with lack of compactness. Adv Nonlinear Stud. 2017;17:429–456 |
Khác |
|