TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THỰC PHẨM TP.HCM KHOA CÔNG NGHỆ THỰC PHẨM - - Đề tài: BIA GVHD: Hà Thị Thanh Nga Nhóm TH: Nhóm 11 Nguyễn Mai Thy Anh 2005200168 Châu Thị Cẩm Nguyên 2005200309 Nguyễn Hoàng Trâm Anh 2005200753 Nguyễn Thị Cẩm Ly TP HỒ CHÍ MINH, tháng năm 2022 2005200561 MỤC LỤC MỤC LỤC HÌNH ẢNH MỞ ĐẦU Lời cam đoan Tổng quan bia 1.1 Giới thiệu 1.2 Nguyên liệu Sơ đồ quy trình công nghệ sản xuất bia 2.1 Giải thích quy trình công nghệ 10 2.1.1 Tách tạp chất Malt gạo 10 2.1.2 Nghiền Malt gạo 10 2.1.3 Xử lý liệu 11 2.1.4 Nấu dịch nha 11 2.1.5 Lọc dịch nha rửa bả Malt 13 2.1.6 Đun sôi dịch nha với hoa houblon 15 2.1.7 Tách bã houblon 16 2.1.8 Làm lạnh dịch nha 17 2.1.9 Cung cấp oxy cho dịch nha giống nấm men 18 2.1.10 Lên men 18 2.1.11 Lên men phụ 20 2.1.12 Lọc bia 20 2.1.13 Làm lạnh bia 20 2.1.14 Bão hòa CO2 21 2.1.15 Rót bia vào chai đóng nắp 22 2.1.16 Thanh trùng 22 2.1.17 Dán nhãn 22 Ưu nhược điểm 22 KẾT LUẬN 24 TÀI LIỆU THAM KHẢO 25 BÀI BÁO KHOA HỌC 25 MỤC LỤC HÌNH ẢNH Hình Hình Hình Hình Hình Hình Hình Sơ đồ khối quy trình sản xuất bia chai Thiết bị lọc ép (Filter press) 14 Nồi lọc dịch nha 16 Thiết bị đun sôi dịch nha với hoa houblon 16 Cyclone để phân riêng hệ huyền phù 17 Thiết bị lên men hình trụ, đáy 20 Tủ lạnh 22 MỞ ĐẦU Ngày với tốc độ hóa thị cơng nghiệp hóa đất nước, nghành cơng nghệ thực phẩm đóng vai trị quan trọng kinh tế quốc dân Đóng vai trị chủ lực có lĩnh vực chế biến đồ uống Bia – nói cách tổng thể loại đồ uống chứa cồn sản xuất trình lên men đường lơ lửng mơi trường lỏng khơng chưng cất sau lên men.Bia loại đồ uống có độ cồn thấp, giàu dinh dưỡng Ngồi việc cung cấp lượng calori lớn, bia chứa hệ enzim phong phú, đặc biệt nhóm enzim kích thích tiêu hóa amylaza Được sản xuất từ nguyên liệu đại mạch ươm mầm, hoa houblon nước với quy trình cơng nghệ đặc biệt, bia có tính chất cảm quan hấp dẫn người: hương thơm đặc trưng, vị đắng dịu, lớp bọt trắng mịn, với hàm lượng CO2 cao (4 – 5g/l) giúp người giải khát cách triệt để ta uống Nước ta nằm vành đai khí hậu nhiệt đới có ưu điểm thị trường giải khát lớn Mặt khác, nhà sản xuất bia lon xuất không nhiều Do sách mở cửa nhà nước thương hiệu bia nước tràn ngập vào thị trường Việt Nam tạo sức cạnh tranh lớn Vì vậy, nước ta cần tạo loại bia có chất lượng cao giá thành sản phẩm ổn định, đẩy mạnh xuất Để tạo bia đạt chất lượng thu hút quan tâm nhiều người trình lên men bia nhân tố quan trọng Chất lượng bia xem kết từ trình hoạt động nấm men Vì thế, để có bia chất lượng đáp ứng nhu cầu người tiêu dùng vấn đề nhiều nhà sản xuất kinh doanh người học công nghệ Sau phần tìm hiểu thơng tin chi tiết cơng nghệ sản xuất bia nói chung q trình lên men bia nói riêng Trong q trình tìm hiểu thu nhận thông tin chắn không tránh khỏi sai sót Do đó, nhóm sinh viên chúng em mong nhận ý kiến đóng góp Cơ để hồn thiện đề tài tiểu luận về: “BIA” Lời cam đoan Chúng em xin cam đoan đề tài: BIA cá nhân/nhóm 11 nghiên cứu thực Chúng em kiểm tra liệu theo quy định hành Kết làm đề tài: BIA trung thực không chép từ tập nhóm khác Các tài liệu sử dụng tiểu luận có nguồn gốc, xuất xứ rõ ràng (Ký ghi rõ họ tên) NHÓM 11 Tổng quan bia 1.1 Giới thiệu Bia đồ uống lâu đời người tạo Đây loại nước uống chứa sản xuất trình lên men đường lơ lửng mơi trường lỏng khơng chưng cất sau lên men Nói cách khác, bia loại nước giải khát có độ cồn thấp, bọt mịn xốp có hướng vị đặc trưng hoa houblon Đặc biệt CO2 hịa tan bia có tác dụng giải nhiệt nhanh, hỗ trợ cho q trình tiêu hóa, ngồi bia chứa lượng vitamin phong phú (chủ yếu vitamin nhóm B vitamin B1, B2, PP ) Nhờ ưu điểm này, bia sử dụng rộng rãi hầu giới với sản lượng ngày tăng Đối với nước ta bia trở thành loại đồ uống quen thuộc với sản lượng tăng trở ngành công nghiệp mũi nhọn ngành công nghiệp nước ta 1.2 Nguyên liệu Malt đại mạch Malt đại mạch nguyên liệu để sản xuất bia Người ta sản xuất malt đại mạch từ hạt đại mạch Đại mạch thuộc nhóm ngũ cốc chia thành hai loại đại: mạch hai hàng (Hordeum distichum) đại mạch sáu hàng (Hordeum hexadistichum) Trong sản xuất bia, người ta sử dụng chủ yếu đại mạch hai hàng Thành phần hóa học trung bình hạt đại mạch hai hàng sau: độ ấm 14,5%; tỉnh bột 5%,0%; chất chiết khác không chứa nitơ 12,0%; protein tổng 9.5%; cellulose 5%, chất béo 2,5% khoảng 2,59 (Narains, 1980), Quy trình sản xuất malt đại mạch bao gồm trình phân loại hạt, làm ướt, ươm mầm, sấy tách mầm Mục đích quy trình sản xuất malt làm hoạt hóa sinh tổng hợp enzyme hạt đại mạch, thủy phần phần chất hạt tổng hợp số hợp chất màu mùi đặc trưng cho malt thành phẩm Theo Hiệp hội bia Châu Âu (European Brewery Convention EBC), chất lượng malt đại mạch đánh giá qua tiêu sau kích thước hạt: 85% tổng số hạt bị giữ lại rây 2,5 2,8 mm; khối lượng 1000 hạt: 28 - 38 g; khối lượng 1hL: 48 - 62 kg; độ ẩm: không 4,5%, độ trích ly: 79 - 83%; protein tổng khơng 12%, nitơ hòa tan 0,55 0,75% so với lượng chất khô; số Kolbach: 35 - 45; nitơ amin tự do: không thấp 150 mg/100 g chất khô malt; hoạt lực dinstatic: 200 - 300 WK, độ nhớt dịch nha nấu theo phương pháp EBC: 1,5 - 1,6 mPa.s: độ màu dịch nha: 2,5 - 4,5° EBC (Moll, 1991) Malt đại mạch sau sản xuất cần phải bảo quản cyclo tối thiểu tháng đưa vào sản xuất bia Thời gian bảo quản malt không năm Thế liệu Thế liệu (adjunct) nhóm nguyên liệu chứa đường tinh bột sử dụng để thay phần malt đại mạch sản xuất bia Mục đích việc dùng liệu làm giảm giá thành sản phẩm, tăng độ bền hóa lý bia góp phần làm đa dạng hóa sản phẩm bia thị trường Nhóm liệu chứa đường gồm có saccharose tinh thể, loại syrup từ trình thủy phân tinh bột có chứa glucose maltose Nhóm liệu chứa tinh bột bao gồm loại ngũ cốc (đại mạch, bắp, gạo, lúa mạch, lúa miến, triticale), loại củ (khoai tây, khoai lang, khoai mì) Ở nước ta, gạo xem liệu phổ biến Gạo (Oryza sativa) có độ ẩm trung bình 10 - 13% Thành phần hóa học (tính theo chất khơ) gạo gồm có: tinh bột 75 - 81%, đường – 5%, cellulose 0,6 - 0,8%, protein tổng - 11%, chất béo 1,6 - 2,5% khoáng 1,0 – 1,2% (Kalunhans, 1992) Ưu điểm gạo so với liệu khác cung cấp hàm lượng chất chiết cao cho dịch nha Tuy nhiên, sử dụng gạo với tỷ lệ cao làm cân đổi tỷ lệ hàm lượng C N dịch nha nên ảnh hưởng khơng tốt đến q trình lên men bia Houblon (Humulus lupulus) Houblon thuộc nhóm thực vật lưỡng tính, dạng dây leo Trong sản xuất bia, người ta sử dụng hoa chưa qua thụ phấn Thành phần hóa học hoa houblon sấy khơ sau: độ ẩm 10 - 149, a-acid: - 12%; β - acid - 10%; tinh dầu: 0,5 - 2,0%; polyphenol 5%; chất béo: - protein tổng: 12 - 18%; cellulose: 40 – 50% pectin: 1-2% (Moll, 1991) Trong sản xuất bia, người ta quan tâm đến thành phần α β -acid, tinh dầu polyphenol hoa houblon chúng có ảnh hưởng lớn đến chất lượng bia Các nhà sản xuất sử dụng houblon dạng hoa tươi, hoa khô, hoa viên cao hoa Nước Nước xem nguyên liệu sản xuất bia Thành phần hóa học nước ảnh hưởng đến biến đổi sinh học hóa sinh quy trình sản xuất chất lượng bia thành phẩm Theo Kaluxiliana cộng (1992) yêu cầu chất lượng nước năm xuất sau: độ cứng 2-4 mg đương lượng/L, độ oxy hóa: khơng lớn mg O2/L; pH: - 7; hàm lượng thành phần khác (m/L, không lớn hơn), chloride 7, sulphate 200; sắt 0,3, manganese 0,05, nitrite 3, nitrate 25, tổng số vi khuẩn hiếu khí khơng q 75 cfu/mL, Collform: khơng phát Nấm men bia Trong sản xuất bản, người ta sử dụng nấm men nấm men chìm Từ năm 1984, nhà phân loại học nấm men người Hà Lan, Kroger - Van - Hy xếp nấm men nấm men chìm vào loài với tên gọi Baccharomyers oreulias Sự khác biệt nấm men chìm nấm men nhiệt độ Iên men, khả kết lắng q trình lên men kết thúc khả lên men đường meliblone Các nhà máy sản xuất Việt Nam chủ yếu sử dụng nấm men chìm Các nguyên liệu phụ khác Trong sản xuất bia, người ta dùng số nguyên liệu phụ khác chế phẩm enzyme (để hỗ trợ cho phản ứng thủy phân trình nấu dịch nha xử lý bia sau lên men), chất chỉnh pH, muối khống (để tăng cường hoạt tính enzyme nguyên liệu hoạt tính trao đổi chất năm men), chất màu, chất chống oxy hóa Sơ đồ quy trình cơng nghệ sản xuất bia Hiện có nhiều quy trình sản xuất bia Hình ảnh giới thiệu sơ đồ khối quy trình sản xuất bia đóng chai sử dụng hỗn hợp nguyên liệu gồm 76% mult đại mạch 28% thổ liệu gạo Hình Sơ đồ khối quy trình sản xuất bia chai 2.1 Giải thích quy trình cơng nghệ 2.1.1 Tách tạp chất Malt gạo Mục đích cơng nghệ: chuẩn bị Malt gạo bị lẫn số tạp chất rơm rạ, bụi, kim loại… Tách tạp chất trình làm nguyên liệu trước đưa vào sản xuất Các biến đổi ngun liệu Q trình tách tạp chất khơng gây biến đổi hóa học bên hạt nguyên liệu Thiết bị Người ta sử dụng thiết bị làm nguyên liệu với hệ thống rây quạt Rây tách tạp chất có kích thước q lớn nhỏ khỏi hạt Còn quạt tách tạp chất nhẹ bụi, rơm rạ… Ngoài ra, người ta dùng thiết bị tách từ để loại bỏ sắt bị lẫn nguyên liệu 2.1.2 Nghiền Malt gạo Mục đích cơng nghệ: chuẩn bị Malt gạo nghiền nhỏ để việc thu nhận chất triết trình nấu dịch nha đạt hiệu cao Các biến đổi nguyên liệu Trong trình nghiền xảy biến đổi vật lý kích thích hạt nguyên liệu giảm, nhiệt độ khối hạt tăng ma sát Các nhà sản xuất cần thực trình nấu dịch nha sau nghiền nguyên liệu để hạn chế giảm hoạt tính enzyme malt Thiết bị thơng số cơng nghệ Thiết bị sử dụng máy nghiền trục vít, vật liệu đưa vào thiết bị có trang bị hệ thống cung cấp nước phía mắt số điểm bơm nước mặt Trong Trình di chuyển vật liệu bơm nước có áp lực 0.5 - 1bar (112-121oC) Thời gian vật liệu qua toàn chiều dài thiết bị từ 50 -60 giây thời gian hàm ẩm vật liệu tăng lên từ 0.5 - 1%, lượng ẩm tập trung chủ yếu vào vỏ trấu hàm ẩm vỏ trấu tăng 10 độ lên men chủng nấm men bia sử dụng Nhiệt độ hoạt động nấm men chìm q trình lên men thường dao động khoảng -15oC 2.1.9 Cung cấp oxy cho dịch nha giống nấm men Mục đích cơng nghệ: chuẩn bị cho q trình lên men bia Các biến đổi ngun liệu Khi sục khơng khí vơ trùng vào dịch nha, oxy hịa tan vào dịch nha Thiết bị thông số công nghệ Thiết bị cung cấp oxy cho dịch nha có dạng hai ống hình trụ đồng trục đặt lồng vào Ống (đường kính nhỏ) đục lỗ thân ống.Người ta nén khơng khí vơ trùng vào ống Ống dẫn dịch nha Tùy theo nồng độ chất khô nhiệt độ dịch nha, nhà sản xuất tính tốn lưu lượng bơm dịch nha áp suất nén khơng khí vào thiết bị cho nồng độ oxy dịch nha đạt - 12mg/L Để cấy giống nấm men, trình bơm dịch nha từ thiết bị nạp oxy đến thiết bị lên men, người ta bơm canh trường nấm men vào đường ống dẫn dịch nha hai thiết bị nói 2.1.10 Lên men Mục đích cơng nghệ: chế biến Các biến đổi nguyên liệu Sinh học: nấm men giống trao đổi chất sinh trưởng dịch nha Hố sinh hóa học: đường lên men chuyển hóa theo chu trình đường phân để tạo thành acid pyruvic tiếp tục chuyển hóa thành ethanol khí carbon dioxide Có nhiều sản phẩm trung gian sản phẩm phụ tạo thành trình lên men bia aldehyde, rượu cao phân tử, acid hữu cơ, ester… Hóa lý: số protein bị đông tụ pH thay đổi nhiệt độ thấp, phần khí carbon dioxide nấm men sinh hòa tan vào dịch lên men Vật lý: có tỏa nhiệt hoạt động trao đổi chất nấm men Thiết bị thông số công nghệ 18 Thiết bị lên men đặt ngồi trời Thể tích sử dụng thiết bị khơng vượt q 85% Đối với nấm men chìm, nhiệt độ lên men thay đổi khoảng 6-15ºC tùy theo chủng nấm men Q trình lên men diễn áp suất thường Khi hàm lượng đường lên men cịn xấp xỉ 1% kết thúc lên men Người ta làm lạnh bia non 02ºC tách nấm men từ phía đáy thiết bị lên men Hình Thiết bị lên men hình trụ, đáy 19 2.1.11 Lên men phụ Mục đích cơng nghệ: hồn thiện Các biến đổi ngun liệu Trong trình lên men phụ xảy biến đổi tương tự trình lên men với tốc độ mức độ chuyển hóa thấp nhiệt độ thấp Ngồi cịn có biến đổi sau đây: Hóa sinh hóa học: quan trọng phản ứng khử diacetyl thành acetoin 2,3 pentanedione, phản ứng ester hóa rượu acid Hóa lý: có kết lắng số phân tử protein, bão hòa CO2 bia Sinh học: số tế bào nấm men bị chết đi, từ xảy tượng tự phân Thiết bị thông số công nghệ Nhiệt độ lên men phụ 0-2ºC Quá trình lên men phụ diễn áp suất, giá trị áp suất thiết bị lên men lên đến 0,07MPa Thời gian lên men phụ kéo dài từ vài ngày đến vài tháng tùy theo loại bia 2.1.12 Lọc bia Mục đích cơng nghệ: hồn thiện sản phẩm Các biến đổi nguyên liệu: trình phân riêng, cấu tử rắn loại bỏ khỏi bia Thiết bị Sử dụng thiết bị lọc dạng cột dạng dĩa Các vật liệu lọc thường phủ thêm lớp bột trợ lọc diatomite polyvinylpyrrolidone (PVPP) để tách cấu tử thật mịn polyphenol Trong số trường hợp, người ta sử dụng kết hợp nhiều thiết bị lọc với để đảm bảo cho bia thành phẩm có độ đạt yêu cầu Các nhà sản xuất cần thực trình lọc bia điều kiện kín để hạn chế xâm nhập vi sinh vật oxy khơng khí vào bia 2.1.13 Làm lạnh bia Mục đích cơng nghệ: chuẩn bị cho q trình bão hòa CO2 20 Các biến đổi nguyên liệu: giảm nhiệt độ bia sau lọc từ 5ºC 0-1ºC Thiết bị: Tủ lạnh cơ: thiết bị gồm bốn thành phần phận bốc hơi, máy nén, phận ngưng tụ van giãn nở Nguyên lý làm lạnh thiết bị: Môi chất lạnh chuyển động tuần hồn qua bốn phận nói thiết bị chuyển từ trạng thái lỏng sang trạng thái quay trở lại trạng thái lỏng Đầu tiên, môi chất lạnh dạng lỏng chuyển qua dạng áp suất thấp phận bốc làm giảm nhiệt độ chất làm lạnh Sau đó, phần môi chất lạnh đến máy nén để tăng áp suất đến phận ngưng tụ để chuyển qua dạng lỏng Cuối cùng, môi chất lạnh qua van giãn nở để giảm áp tiếp tục cho chu kỳ Hình Tủ lạnh 2.1.14 Bão hịa CO2 Mục đích cơng nghệ: hoàn thiện Các biến đổi nguyên liệu: hàm lượng CO2 bia tăng đến 0,5% w/w Thiết bị: Sử dụng thiết bị bão hòa CO2 cho bia Áp lực CO2 sử dụng 0,15-0,20MPa 21 2.1.15 Rót bia vào chai đóng nắp Mục đích cơng nghệ: hồn thiện Các biến đổi nguyên liệu: xảy tổn thất CO2 q trình rót đóng nắp Thiết bị: sử dụng hệ thống thiết bị rót đóng nắp tự động hoạt động liên tục Q trình rót thực điều kiện đẳng áp, sử dụng bao bì thủy tinh 2.1.16 Thanh trùng Mục đích cơng nghệ: bảo quản Các biến đổi nguyên liệu: vi sinh vật enzyme bia bị vô hoạt Thiết bị thông số công nghệ: sử dụng thiết bị trùng dạng tunnel Vùng trùng có nhiệt độ 63ºC, thời gian lưu sản phẩm (loại chai 500mL) vùng trùng thường 20-30 phút 2.1.17 Dán nhãn Mục đích cơng nghệ: hoàn thiện Thiết bị: sử dụng thiết bị dán nhãn hoạt động tự động theo phương pháp liên tục Ưu nhược điểm Mỗi thiết bị mang ưu nhược điểm riêng - Lọc Thiết bị lọc ép Ưu điểm trình lọc ép quy trình vận hành đơn giản chi phí đầu tư thiết bị khơng lớn Nhược điểm tốn nhiều lao động việc tháo bã, vệ sinh lắp ráp thiết bị trước mẻ lọc Thiết bị nồi lọc Ưu điểm: giới hóa tự động hóa trình lọc, cấu tạo đơn giản Nhược điểm: Thời gian kéo dài Nghiền Thiết bị nghiền trục 22 Ưu điểm: Thiết bị tác động đồng thời lực ép lực xé lên nguyên liệu dẫn đến kích thước nguyên liệu đạt độ nhỏ định Nhược điểm: nghiền vật liệu khô Thiết bị nghiền trục vít - Ưu điểm: giảm tỷ lệ nát vỏ trấu q trình nghiền khơ, vỏ trấu khơng bị vỡ tinh bột nội nhũ vỡ vụn tạo điều kiệu đường hóa nhanh thời gian lọc rút ngắn Nhược điểm: Nghiền nhiệt độ cao làm bất hoạt enzyme Làm lạnh bia Thiết bị dạng bảng Ưu điểm: Dễ tháo lắp tẩy rửa, dễ tăng công suất nhiệt, hiệu suất trao đổi nhiệt cao, tiệm cận đối đa nhiệt độ, đảm nhiệm nhiều chức thiết bị, giá thành thấp Nhược điểm: khung trao đổi nhiệt miếng đệm dài nắm phải giữ lại với nhau, có kẽ hở, tốn nhiều thời gian để làm sạch, thay phận, rãnh bị kẹt chất bẩn bị oxi gây tắt nghẽn Tủ lạnh Nhược điểm: làm lạnh gián đoạn liên tục Thường sử dụng cho vật liệu rắn, thời gian làm lạnh lâu 23 KẾT LUẬN Bia loại nước uống bổ dưỡng cho thể, năm gần kinh tế bước lên Do đó, Việt Nam năm gần nhu cầu bia tăng nhanh số lượng chất lượng Việc nâng cao sản lượng nhà máy sản xuất bia cần thiết vấn đề vốn đầu tư gặp nhiều khó khăn Mặc khác, thời điểm, thời tiết mùa nước ta mức tiêu thụ bia mùa không cân đối Thực tế cho thấy nhiều nhà máy bia bị công suất mùa hè, không đáp ứng đủ nhu cầu người tiêu dùng mà mùa đơng lại tiêu thụ chậm Vì vậy, cần phải có biện pháp thay đổi q trình thực nhằm đáp ứng nhu cầu ngày cao xã hội Thế nhưng, nhân tố góp phần quan trọng làm ảnh hưởng đến chất lượng số lượng bia khơng khác q trình lên men bia Với phương pháp tìm hiểu giúp cho nhà sản xuất giải vấn đề đáp ứng tốt số lượng bia mùa hè Tiểu luận nhằm góp phần tìm hiểu chung vấn đề công nghệ lên men bia ứng dụng phương pháp lên men bia.Sau thời gian chuẩn bị thân người nhóm thực cố gắng hồn thành Thế nhưng, khơng thể tránh khỏi sai sót Nhóm em mong góp ý kiến bạn Nhóm xin chân thành cảm ơn! 24 TÀI LIỆU THAM KHẢO Lê Văn Việt Mẫn, giáo trình Cơng nghệ chế biến thực phẩm, nhà xuất Đại học Quốc gia TP Hồ Chí Minh BÀI BÁO KHOA HỌC Beer fermentation modeling for optimum flavor and performance.pdf 25 BẢNG PHÂN CÔNG CÔNG VIỆC STT Họ tên Nguyễn Mai Thy Anh Nguyễn Hoàng Trâm Anh Nhiệm vụ Đánh giá Quy trình cơng Hồn thành tốt, nghệ hạn Quy trình cơng Hồn thành tốt, nghệ hạn Tổng quan Hoàn thành tốt, Word hạn Châu Thị Cẩm Nguyên Mở đầu Kết luận Hoàn thành tốt, Thiết bị hạn Nguyễn Thị Cẩm Ly Word 26 Available online at www.sciencedirect.com ScienceDirect PapersOnLine 55-1 381–386 Beer fermentationIFAC modeling for(2022) optimum flavor and performance * * * flavor and performance * Beer fermentation modeling for optimum Raju Yerolla Mohammed Mehshan KMoptimum Nevin Roy flavor Nekkanti Sri Harsha Beer fermentation modeling for and performance Beer fermentation modeling for optimum flavor and performance modeling for optimum flavor and performance * * * * * Beer fermentation Raju Yerolla* Mohammed Mehshan KM * Nevin Roy* Nekkanti Sri Harsha** Myreddy PrudhviMehshan Pavan Ganesh Chandra BestaSri * Mohammed Raju Yerolla Yerolla KM ** Nevin Nevin Roy**Shekar Nekkanti Sri Harsha Harsha** * Mohammed Mehshan Raju KM Roy Nekkanti Raju Yerolla Nevin Roy**Shekar Nekkanti Sri Harsha * Mohammed Mehshan KM * * ** **.Nevin Mohammed Mehshan KM Nekkanti Sri Harsha** * Myreddy Prudhvi Pavan Ganesh Chandra Besta Raju Yerolla Roy Mohammed Mehshan KM Nekkanti Sri Myreddy Prudhvi Prudhvi Pavan Pavan Ganesh Ganesh** Chandra Chandra Shekar Shekar Besta Besta** Harsha Myreddy Myreddy Prudhvi Pavan Ganesh Chandra Shekar Besta * * *Institute * Myreddy Prudhvi Pavan Ganesh Chandra Shekar *Department of Chemical Engineering, of Technology, Calicut, India 673601 Myreddy Prudhvi PavanNational Ganesh Chandra Shekar Besta Besta (e-mail: schandra@nitc.ac.in) *Department of Chemical Engineering, National Institute of Technology, Calicut, *Department of Chemical Engineering, National India 673601 *Department of Chemical Engineering, National Institute Institute of of Technology, Technology, Calicut, Calicut, India India 673601 673601 *Department of Chemical Engineering, National Institute of Technology, Calicut, India 673601 (e-mail: schandra@nitc.ac.in) *Department of Chemical Engineering, National Institute of Technology, Calicut, India 673601 *Department of Chemical Engineering, National Institute of Technology, Calicut, India 673601 (e-mail: schandra@nitc.ac.in) (e-mail: schandra@nitc.ac.in) (e-mail: schandra@nitc.ac.in) (e-mail: (e-mail: schandra@nitc.ac.in) schandra@nitc.ac.in) Abstract: Beer has been around for millennia Fermentation is the most vital Over time, fermenting technology has advanced and other grains wereis the Over same ingredients, each Abstract: has around for Fermentation the most time, Abstract: Beer Beer has been been Wheat, around barley, for millennia millennia Fermentation isused the Despite most vital vital Over time, fermenting fermenting Abstract: Beer has been around for millennia Fermentation is the most vital Over time, fermenting Abstract: Beer has been around for millennia Fermentation is the most vital Over time, fermenting beer is distinct Making beer requires a carbohydrates supply and yeast Microbes help brewers from raw technology has advanced Wheat, barley, and other grains were used Despite the same ingredients, each Abstract: Beer has been around for millennia Fermentation is the most vital Over time, fermenting Abstract: has been Wheat, around barley, for millennia Fermentation the Despite most vital time, fermenting technology Beer has advanced advanced Wheat, barley, and other other grains were wereisused used Despite the Over same ingredients, ingredients, each technology has and grains the same each technology has advanced Wheat, barley, and otherOthers grains were used Despite the same ingredients, each material production through packaging stability degrade beer since it is created by fermenting beer is distinct Making beer requires a carbohydrates supply and yeast Microbes help brewers from technology has advanced Wheat, barley, and other grains were used Despite the same ingredients, each beer is is distinct distinct Making Making beer beer requires requires aa carbohydrates carbohydrates supply supply and and yeast yeast Microbes Microbes help help brewers brewers from from raw raw beer beer isTemperature distinct Making beeracids, requires a carbohydrates supply and Temperatures yeast Microbes help brewers from raw raw food affects higher alcohols, and esters during fermentation can material production through packaging stability Others degrade beer since it is created by fermenting beer is distinct Making beer requires a carbohydrates supply and yeast Microbes help brewers from raw material production through packaging stability Others degrade beer since it is created by fermenting material production through packaging stability Others degrade beer since it is created by fermenting material production through packaging stability Others degrade beer since it is created by fermenting increase acidity and fruitiness The goal of this paper is to develop a flavor model based on available food Temperature affects acids, higher alcohols, and esters Temperatures Temperatures during fermentation can material production affects throughacids, packaging stability Others degrade beer since it during is created by fermenting food Temperature higher alcohols, and esters fermentation can food Temperature affects acids, higher alcohols, and Temperatures during fermentation can food Temperature affects acids, higher alcohols, andis esters esters Temperatures duringdata fermentation can literature In addition, build the growth model in MATLAB anddevelop compare it to industry to on establish the increase acidity and fruitiness The goal of this paper to develop a flavor model based on available food Temperature affects acids, higher alcohols, and esters Temperatures during fermentation can increase acidity and fruitiness The goal of this paper is to a flavor model based available increase acidity and fruitiness The goal of this paper is to develop a flavor model based on available increase acidity and fruitiness The goal of this paper is to develop a flavor model data based on available essential kinetics involved in taste development literature In addition, build the growth model in MATLAB and compare it to industry to establish the increase acidity and fruitiness The goal of this paper is to develop a flavor model data based on available literature In addition, build the growth model in MATLAB and compare it to industry to establish the literature In addition, build the growth model in MATLAB and compare it to industry data to establish the literature In addition, build the growth model in MATLAB and compare it to industry data to establish the essential kinetics involved in taste development literature In addition, build the growth model in MATLAB and compare it to industry data to establish the license BY-NC-ND CC the under article access open an is This Authors The 2022 literature In addition, build the growth model in MATLAB and compare it to industry data to establish the © Keywords: Beer fermentation, Flavor, Modeling, Simulation, Temperature, Control Copyright essential kinetics involved in taste development essential kinetics involved in taste development essential kinetics involved in taste development essential kinetics involved in taste development /licenses/by-nc-nd/4.0/) (https://creativecommons.org essential kinetics involved in taste development Keywords: Beer fermentation, Flavor, Modeling, Simulation, Temperature, Control Keywords: Beer Beer fermentation, fermentation, Flavor, Flavor, Modeling, Modeling, Simulation, Simulation, Temperature, Control Keywords: Temperature, Control modelling of essential component concentrations are required Keywords: Beer fermentation, Flavor, Modeling, Simulation, Temperature, Control Keywords: fermentation, Temperature, Control INTRODUCTION Keywords:1.Beer Beer fermentation, Flavor, Flavor, Modeling, Modeling, Simulation, Simulation, Temperature, Control to study, simulate, and optimize beer fermentation.(Rodman modelling of essential component are modelling of of essential essential component component concentrations concentrations are required required modelling concentrations are required INTRODUCTION modelling of essential component concentrations are required INTRODUCTION and Gerogiorgis, 2016) The advancement of fermentation is The beer production1 is well documented, with suggestions INTRODUCTION to study, simulate, and optimize beer fermentation.(Rodman modelling of essential component concentrations are modelling of essential concentrations are required required INTRODUCTION to study, study, simulate, simulate, andcomponent optimize beer beer fermentation.(Rodman to and optimize fermentation.(Rodman INTRODUCTION to study, simulate, and optimize beer fermentation.(Rodman highly dependent on yeast pitching rate (Guido et al., 2004), that it is one of the world's oldest prepared beverages, dating and Gerogiorgis, 2016) The advancement of fermentation The beer production is well documented, with suggestions to study, simulate, and optimize beer fermentation.(Rodman and Gerogiorgis, Gerogiorgis, 2016) 2016) The The advancement advancement of of fermentation fermentation is is The beer beer production production is is well well documented, documented, with with suggestions suggestions and is The and Gerogiorgis, 2016) The advancement of fermentation is The beer production is well documented, with suggestions dissolved oxygen concentration, batch pressure, as early as the early Neolithic period (Arnold, 2005) Several highly dependent on yeast pitching rate (Guido et al., 2004), that it is one of the world's oldest prepared beverages, dating The advancement of fermentation is and Gerogiorgis, 2016) The beer production is well documented, with suggestions The advancement of fermentation is highly dependent dependent on on yeast yeast pitching pitching rate rate (Guido (Guido etand al., system 2004), that it it is is one one of of the the world's world's oldest oldest prepared prepared beverages, beverages, dating dating highly et al., 2004), that highly dependent on yeast pitching rate (Guido et al., 2004), that it is one of the world's oldest prepared beverages, dating temperature, all of which have a significant effect on yeast archaeological excavations have discovered jars containing dissolved oxygen concentration, batch pressure, and system as early as the early Neolithic period (Arnold, 2005) Several rate (Guido et al., 2004), highly dependent on yeast pitching that it is one of the world's oldest prepared beverages, dating rate (Guido et al., 2004), dissolved oxygen concentration, batch pressure, and system as early early as as the early early Neolithic Neolithic period period (Arnold, (Arnold, 2005) 2005) Several Several dissolved oxygen concentration, batch pressure, and system as dissolved oxygen concentration, batch pressure, and system as early as the the early Neolithic period (Arnold, 2005) Several growth andoxygen metabolic rate.have As long as pressure, no harm to yeast the remains wine 7,000have years old Humankind's first dissolved temperature, all of which have significant effect on archaeological excavations discovered jars containing dissolved oxygen concentration, batch pressure, andthe system as early as theofearly Neolithic period (Arnold, 2005) Several concentration, and system temperature, all of which aaabatch significant effect on yeast discovered jars containing archaeological excavations have temperature, all of which have significant effect on yeast archaeological excavations have discovered jars containing temperature, all of which have a significant effect on yeast archaeological excavations have discovered jars containing cells occurs and the temperature remains below 30 degrees encounter with alcoholic beverages was likely by growth and metabolic rate As long as no harm to the yeast the remains of wine 7,000 years old Humankind's first temperature, all of which have a significant effect on archaeological excavations have discovered jars containing temperature, all of which have a significant effect on growth and metabolic rate As long as no harm to the yeast the remains of wine 7,000 years old Humankind's first growth and metabolic rate As long as no harm to the yeast the remains of wine 7,000 years old Humankind's first growth and metabolic rate As long as no harm to the yeast the remains with of wine 7,000 years old Humankind's first Celsius, high temperature stimulates fermentation chance(Luisa Alba-Lois, 2017) The brewing of beer has cells occurs and the temperature remains below 30 degrees encounter alcoholic beverages was likely by growth and metabolic rate As long as no harm to the yeast the remains with of wine 7,000 years old Humankind's first growth and metabolic rate As long as no below harm to30 the yeast cells occurs and the temperature remains degrees encounter alcoholic beverages was likely by cells occurs and the temperature remains below 30 degrees encounter with alcoholic beverages was likely by cells occurs and the temperature remains below 30 degrees encounter with alcoholic beverages was likely by been done for thousands of years Processing grains, like Celsius, high temperature stimulates fermentation chance(Luisa Alba-Lois, 2017) The brewing of beer has cells occurs and the temperature remains below 30 degrees encounter with alcoholic beverages was likely by cells occurs and the temperature remains below 30 degrees Celsius, high temperature stimulates fermentation encounter with alcoholic beverages was likely by of beer has chance(Luisa Alba-Lois, 2017) The brewing A coolant circulates via the cooling coil or cooling jacket to Celsius, high temperature stimulates fermentation chance(Luisa Alba-Lois, Alba-Lois, 2017) 2017) The The brewing brewing of of beer beer has has Celsius, high temperature stimulates fermentation chance(Luisa barley, can for produce a favorable beverage and been thousands of Processing grains, Celsius, high temperature stimulates fermentation Since the chance(Luisa Alba-Lois, 2017) The brewing of beer has high temperature stimulates fermentation chance(Luisa Alba-Lois, 2017) The brewing(Harrison of beer like has Celsius, been done done for thousands of years years Processing grains, like control the fermentation tank's temperature been done for thousands of years Processing grains, like A coolant coolant circulates via the cooling coil or cooling jacket to been done for thousands of years Processing like A circulates via the cooling coil or cooling jacket to Albanese, Fermentation is a beverage key phase(Harrison ingrains, producing coolant circulates via the cooling coil or cooling jacket to barley, can produce aaa favorable and been for thousands of Processing grains, like A coolant circulates via the cooling coil or cooling jacket to been done for thousands of years years Processing grains, like barley,done can2019) produce favorable beverage (Harrison and A discovery of fermentation the biochemical processes involved in flavor barley, can produce favorable beverage (Harrison and control the tank's temperature Since the A coolant circulates via the cooling coil or cooling jacket to A coolant circulates via the cooling coil or cooling jacket to barley, can produce a favorable beverage (Harrison and control the fermentation tank's temperature Since the beer Yeast and carbohydrates combine to generate alcohol control the fermentation tank's temperature Since the Albanese, 2019) Fermentation is a key phase in producing control the fermentation tank's temperature Since the barley, can produce a favorable beverage (Harrison and Albanese, 2019) 2019) Fermentation Fermentation is is aa key key phase phase in in producing producing generation, several researchers have built kinetic and Albanese, discovery of the biochemical processes involved in flavor control the fermentation tank's temperature Since the control the fermentation tank's temperature Since the Albanese, 2019) Fermentation is a key phase in producing discovery of the biochemical processes involved in flavor and flavoring compounds It all depends on the starting sugar discovery of of the the biochemical biochemical processes processes involved involved in in flavor flavor beer and generate alcohol Albanese, Fermentation combine is a key to phase in producing beer Yeast Yeast2019) and carbohydrates carbohydrates combine to generate alcohol discovery dynamic models can help manage quality (Gee beer Yeast and carbohydrates combine to generate alcohol generation, researchers have kinetic and of the biochemical processes involved in flavor discovery of several thethat biochemical processes involved in flavor generation, several researchers havebeerbuilt built kinetic and beer Yeast and carbohydrates combine to the generate alcohol quantity, temperature, andIt yeast type In commercial beer discovery generation, several researchers have built kinetic and and flavoring compounds It all depends on starting sugar beer Yeast and carbohydrates combine to generate alcohol generation, several researchers have built kinetic and and flavoring compounds all depends on the starting sugar Ramirez, 1994) have developed a more advanced flavour and flavoring compounds It all depends on the starting sugar dynamic models that can help manage beer quality (Gee generation, several researchers have built kinetic and generation, several researchers have built kinetic and and flavoring compounds It all depends on the starting sugar dynamic models that can help manage beer quality (Gee fermentation, a cooling refrigeration system is commonly dynamic models that can help manage beer quality (Gee and quantity, temperature, and yeast type In commercial beer and flavoring compounds It all depends on the starting sugar dynamic models that can help manage beer quality (Gee and quantity, temperature, and yeast type In commercial beer model with the help ofdeveloped ahelp growth temperature quantity, temperature, temperature, and and yeast yeast type type In In commercial commercial beer beer dynamic Ramirez, 1994) have aaamodel more advanced flavour models that manage beer quality (Gee and quantity, dynamic models that can help manage beerwhose quality (Gee and Ramirez, 1994) havecan developed more advanced flavour used to manage the temperature (Ramirez and Maciejowski, Ramirez, 1994) have developed more advanced flavour fermentation, a cooling refrigeration system is commonly quantity, temperature, and yeast type In commercial beer Ramirez, 1994) have developed a more advanced flavour fermentation, a cooling refrigeration system is commonly effects are added The growth model included three sugars fermentation, aa cooling cooling refrigeration refrigeration system system is is commonly commonly Ramirez, model the aaa growth temperature 1994) have more advanced flavour fermentation, Ramirez, 1994) haveof developed morewhose advanced flavour model with with the help help ofdeveloped growth aamodel model whose temperature 2007a) model with the help of growth model whose temperature used to manage the temperature (Ramirez and Maciejowski, fermentation, a cooling refrigeration system is commonly model with the help ofmaltose, growth model whose temperature fermentation, a the cooling refrigeration system is commonly model used to manage temperature (Ramirez and Maciejowski, consumption: glucose, maltotriose, biomass growth, used to manage temperature (Ramirez and Maciejowski, effects are added The growth model included three sugars with the aaa growth model whose temperature help of growth model with the growth model whose temperature used to manage the the temperature (Ramirez and Maciejowski, effects are added The model included three sugars effects are added The growth model included three sugars 2007a) used to the temperature (Ramirez and Maciejowski, effects are added The growth model included three used to manage manage the temperature (Ramirezmalts and had Maciejowski, 2007a) and ethanol production Gee and Ramirez added asugars new Additionally, it is apparent that coloured a specific 2007a) consumption: glucose, maltose, maltotriose, biomass growth, effects are added The growth model included three sugars 2007a) consumption: glucose, maltose, maltotriose, biomass growth, consumption: glucose, maltose, maltotriose, biomass growth, 2007a) consumption: glucose, maltose, maltotriose, biomass growth, 2007a) feature to the growth model: growth limitation due to flavour, which is frequently associated with special dark and ethanol production Gee and Ramirez added a Additionally, it is apparent apparent that coloured malts had specific consumption: glucose, maltose, maltotriose, and Gee Ramirez added aa new new Additionally, it is that coloured malts had aaa specific and ethanol ethanol production production Gee and and Ramirezbiomass added growth, new Additionally, it apparent that coloured malts had specific and ethanol production Gee and Ramirez added aa new Additionally, it is isand apparent thatassociated coloured malts had aproduced specific availability of unsaturated fatty acids The nutrient model is beers(Harrison Albanese, 2019) Naturally feature to the growth model: growth limitation due to is frequently with special dark flavour, which and ethanol production Gee and Ramirez added new Additionally, it isis thatassociated coloured malts a specific ethanol production Gee and Ramirez added due a new feature to growth growth limitation to flavour, frequently with special dark feature to the the growth model: model: growth limitation due to flavour, which which isapparent frequently associated with had special dark and feature to the growth model: growth limitation due to flavour, which is frequently associated with special dark developed with three amino acids, forming fusel alcohol, enzymes catalyse the major biological changes in the brewing availability of unsaturated fatty acids The nutrient model is beers(Harrison and Albanese, 2019) Naturally produced feature to the growth model: growth limitation due to flavour, which is frequently associated with special dark feature to of theunsaturated growth model: growth due to availability of unsaturated fatty acids acids Thelimitation nutrient model model is flavour, which and is frequently with special dark availability beers(Harrison Albanese, 2019) produced fatty The nutrient is beers(Harrison and Albanese,associated 2019) Naturally Naturally produced availability of unsaturated fatty acids The nutrient model is beers(Harrison and Albanese, 2019) Naturally produced another flavour group This model has been developed based process from barley (during malting) and yeast (Harrison and developed with three amino acids, forming fusel alcohol, enzymes catalyse the major biological changes in the brewing availability of unsaturated fatty acids The nutrient model is beers(Harrison and Albanese, 2019) Naturally produced availability of unsaturated fattyacids, acids forming The nutrient is developed with with three amino amino acids, forming fusel model alcohol, beers(Harrison Albanese, 2019).changes Naturally enzymes catalyse catalyseand the major major biological changes in the theproduced brewing developed three fusel alcohol, enzymes the biological in brewing developed with three amino acids, forming fusel alcohol, enzymes catalyse the major biological changes in the brewing on research on fusel alcohols (Gee and Ramirez, 1994) have Albanese, 2019) Beer is commercially manufactured by the another flavour group This model has been developed based process from barley (during malting) and yeast (Harrison and enzymes catalyse the major biological changes in the brewing developed with three amino acids, forming fusel alcohol, another flavour flavour group group This This model model has has been been developed developed based based enzymes catalyse the(during major biological changes the brewing process from from barley (during malting) and and yeast in (Harrison and another process barley malting) yeast (Harrison and another flavour group This has been developed based process from barley (during andmanufactured yeast and on ten flavour compounds that fall into three groups controlled fermentation ofmalting) wort, liquid rich(Harrison in sugars, on research on fusel alcohols (Gee and Ramirez, 1994) have by the Albanese, 2019) Beer is another flavour group This model model has been developed based process from barley (during malting) andmanufactured yeast (Harrison another flavour group This model has been developed based on research on fusel alcohols (Gee and Ramirez, 1994) have Albanese, 2019) Beer is commercially commercially manufactured by and the worked on research on fusel alcohols (Gee and Ramirez, 1994) have Albanese, 2019) Beer is commercially by the on research on fusel alcohols (Gee and Ramirez, 1994) have Albanese, 2019) Beer is commercially manufactured by the Those are fusel alcohols, esters, and vicinal diketones The nitrogenous chemicals, sulphur compounds, and trace worked on ten flavour compounds that fall into three groups controlled fermentation of wort, liquid rich in sugars, on research on fusel alcohols (Gee and Ramirez, 1994) have Albanese, 2019) Beer is commercially manufactured by the worked on ten flavour compounds that fall into three groups controlled fermentation of wort, liquid rich in sugars, worked on ten flavour compounds that fall into three groups controlled fermentation of wort, liquid rich in sugars, worked on ten flavour compounds that fall into three groups controlled fermentation of wort, liquid rich in sugars, research of Ayarapaa, Geier, and Piendl is used to develop components derived from malted barley Fermentation is the Those are fusel alcohols, esters, and vicinal diketones The nitrogenous chemicals, sulphur compounds, and trace worked on fusel ten flavour compounds thatvicinal fall intodiketones three groups controlled fermentation of wort, compounds, liquid rich in sugars, Those are alcohols, esters, and The nitrogenous chemicals, sulphur and trace Those are alcohols, esters, and vicinal diketones The nitrogenous chemicals, sulphur compounds, and trace Those areoffusel fusel alcohols, esters, and vicinal diketones The nitrogenous chemicals, sulphur compounds, and carbon trace the flavour Model chemical reaction thatfrom converts glucose toFermentation ethanol and research Ayarapaa, Geier, and Piendl is used to develop components derived from malted barley Fermentation is the Those are fusel alcohols, esters, and vicinal diketones The nitrogenous chemicals, sulphur compounds, and trace research of Ayarapaa, Geier, and Piendl is used to develop components derived malted barley is the research of Ayarapaa, Geier, and Piendl is used to develop components derived from malted barley Fermentation is the research of Ayarapaa, Geier, and Piendl is used to develop components derived from malted barley.toFermentation is the the dioxide(Aroh, 2019): flavour Model chemical reaction that converts glucose ethanol and carbon research of Ayarapaa, Geier, and Piendl is used to develop components derived from malted barley Fermentation is the research of Ayarapaa, Geier, and Piendl is used to develop the flavour Model chemical reaction that converts glucose to ethanol and carbon Theflavour model's parameters are identified by (De Keukeleirc, the flavour Model chemical reaction reaction that that converts converts glucose glucose to to ethanol ethanol and and carbon carbon the chemical Model dioxide(Aroh, 2019): the flavour chemical that converts to the flavour Model chemical reaction converts glucose to2 ethanol ethanol and carbon carbon dioxide(Aroh, 2019): 𝐶𝐶6 𝐻𝐻12 𝑂𝑂6reaction + 2𝑃𝑃𝑂𝑂 2𝐴𝐴𝐴𝐴𝐴𝐴 → 2𝐶𝐶2 𝐻𝐻5glucose 𝑂𝑂𝑂𝑂 + 2𝐶𝐶𝑂𝑂 + 2𝐴𝐴𝐴𝐴𝐴𝐴 and (1) 2000), and Model it parameters is based on are a robust scheme for unconstrained +that dioxide(Aroh, 2019): The model's parameters are identified by (De Keukeleirc, dioxide(Aroh, 2019): The model's identified by (De Keukeleirc, The model's parameters parameters are are identified identified by by (De (De Keukeleirc, Keukeleirc, dioxide(Aroh, 2019): The model's dioxide(Aroh, 2019): numerical minimization of the nonlinear function Optimal 𝐶𝐶 𝐻𝐻 𝑂𝑂 + 2𝑃𝑃𝑂𝑂 + 2𝐴𝐴𝐴𝐴𝐴𝐴 → 2𝐶𝐶 𝐻𝐻 𝑂𝑂𝑂𝑂 + 2𝐶𝐶𝑂𝑂 + 2𝐴𝐴𝐴𝐴𝐴𝐴 (1) 2000), and it is based on a robust scheme for unconstrained 𝐻𝐻12 𝑂𝑂 + 2𝑃𝑃𝑂𝑂 +grain 𝐻𝐻5 𝑂𝑂𝑂𝑂 +into 2ethanol 𝐶𝐶 2𝐴𝐴𝐴𝐴𝐴𝐴 → 2𝐶𝐶 2𝐶𝐶𝑂𝑂 + 2𝐴𝐴𝐴𝐴𝐴𝐴 (1) The model's parameters are identified by (De Keukeleirc, 2000), and it is based on a robust scheme for unconstrained Sugars from the germinated and higher 12 𝐶𝐶6 𝐻𝐻 𝐻𝐻12 𝑂𝑂 𝑂𝑂6 + + 2𝑃𝑃𝑂𝑂 2𝑃𝑃𝑂𝑂4 + + 2𝐴𝐴𝐴𝐴𝐴𝐴 2𝐴𝐴𝐴𝐴𝐴𝐴 → → 2𝐶𝐶 2𝐶𝐶2 𝐻𝐻 𝐻𝐻5 𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂 + + 2𝐶𝐶𝑂𝑂 2𝐶𝐶𝑂𝑂2 + + 2𝐴𝐴𝐴𝐴𝐴𝐴 2𝐴𝐴𝐴𝐴𝐴𝐴 (1) 2000), and it is based on a robust scheme for unconstrained 𝐶𝐶 (1) 2000), and it is based on a robust scheme for unconstrained 𝐻𝐻12 𝑂𝑂6 + 2𝑃𝑃𝑂𝑂4 + 2𝐴𝐴𝐴𝐴𝐴𝐴 → 2𝐶𝐶2 𝐻𝐻5 𝑂𝑂𝑂𝑂 + 2𝐶𝐶𝑂𝑂2 + 2𝐴𝐴𝐴𝐴𝐴𝐴 temperature management for batch beer fermentation has 𝐶𝐶 (1) numerical minimization of the nonlinear function Optimal 12 𝑂𝑂when + 2𝑃𝑃𝑂𝑂 + 2𝐴𝐴𝐴𝐴𝐴𝐴 + 2𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶66 𝐻𝐻12 → 2𝐶𝐶22to 𝐻𝐻55hopped 𝑂𝑂𝑂𝑂 +into 2𝐶𝐶𝑂𝑂 (1)has 2000), and minimization it is based onof a robust scheme function for unconstrained numerical the nonlinear Optimal alcohols yeast is added wort Thisand model Sugars from the grain germinated ethanol and higher numerical minimization of the nonlinear function Optimal Sugars from the grain germinated into ethanol higher numerical minimization of the nonlinear function Optimal Sugars from the grain germinated into ethanol and higher been studied Baker yeast growth has intruded on the model temperature management for batch beer fermentation has numerical minimization of the nonlinear function Optimal Sugars from the grain germinated into ethanol and higher numerical thebatch nonlinear Optimal temperature management for beer fermentation has two pieces The response engineering successfully alcohols when yeast is to wort This model has temperatureminimization managementoffor for batch beer function fermentation has Sugars grain germinated intointerface ethanol higher alcohols when yeast is added to hopped wort This model has management batch beer fermentation has alcoholsfrom whenthe yeast is added added to hopped hopped wort Thisand model has temperature This type is commonly known to as Baker's Yeast with the been studied Baker yeast growth has intruded on the model temperature management for batch beer fermentation has alcohols when yeast is added to hopped wort This model has temperature management for batch beer fermentation has been studied Baker yeast growth has intruded on the model models the fermentation process in the initial phase A two pieces The response engineering interface successfully been studied Baker yeast growth has intruded on the model alcohols when yeast is added to hopped wort This model has alcohols when yeast is added to hopped wort This model has two pieces The response engineering interface successfully been studied Baker yeast growth has intruded on the model two pieces The response engineering interface successfully feed batch reactor It has been proposed for improving This type is commonly known to as Baker's Yeast with the been studied Baker yeast growth has intruded on the model two pieces The response engineering interface successfully been studied Baker yeastknown growth intrudedYeast on thewith model This type type is commonly commonly known to has as Baker's Baker's Yeast with the comprehensive dynamic unattainable due to the models the fermentation process the phase A two pieces response engineering interface This is to as the two pieces The response model engineering interface successfully models the The fermentation processis in in the initial initialsuccessfully phase A This type is commonly known to as Baker'snetwork Yeast with the models the fermentation process in the initial phase A ethanol output as well as taste A neural tool for feed batch reactor It has been proposed for improving models the fermentation process in the initial phase A This type is commonly known to as Baker's Yeast with the feed batch reactor It has been proposed for improving complex sequence of chemical interactions involving over comprehensive dynamic model is unattainable due to the models the fermentation process in the initial phase A feed batch reactor It has been proposed for improving models the fermentation processis the initialdue phase A feed comprehensive dynamic model model is in unattainable due to the the batch reactor It has been proposed for improving comprehensive dynamic unattainable to brewery fermentation has been proposed ethanol output as well as taste A neural network tool feed batch reactor It has been proposed for improving comprehensive dynamic model is unattainable due to the feed batch reactor It has been proposed for improving ethanol output output as as well well as as taste taste A A neural neural network network tool tool for for 600 species Exact modelsinvolving forduedynamic complex sequence of chemical interactions ethanol for comprehensive dynamic modelsystem is unattainable toover the ethanol complex sequence ofchemical chemical interactions involving over output as well asbeen taste A neural network tool for complex sequence of chemical interactions involving over brewery fermentation has proposed complex sequence of chemical interactions involving over ethanol output as well as taste A neural network tool for brewery fermentation has been proposed 600 species Exact chemical system models for dynamic brewery fermentation has been proposed complex sequence of chemical interactions involving over 600 species Exact chemical system models for dynamic 600 600 species species Exact Exact chemical chemical system system models models for for dynamic dynamic brewery fermentation has been proposed 600 species Exact chemical system models for dynamic brewery fermentation has been proposed 2405-8963 Copyright © 2022 The Authors This is an open access article under the CC BY-NC-ND license Peer review under responsibility of International Federation of Automatic Control 10.1016/j.ifacol.2022.04.063 Raju Yerolla et al / IFAC PapersOnLine 55-1 (2022) 381–386 382 The method predicts fermentation based on yeast history, fermentation recipe, and raw material parameters It may also predict the length of fermentation and ethanol yield Ale is made hotter than Lager Indirectly, the beer's flavor is impacted by the temperature profile This is a beer brand secret Additional product enhancements include the elimination of fusel alcohols without impairing ester synthesis or the addition of esters without impairing acetaldehyde concentration It is possible to produce the same quality beer in less time (Ramirez and Maciejowski, 2007a) The reaction kinetics is as follows for reactions (1), (2), and (3) Note that because of the simplified reaction description, yield coefficients, Y, are used to compute product concentrations The goal of this study is to create a flavor model based on existing literature and to create an appropriate industrial temperature profile In addition, the goal is to determine the key kinetics involved for flavor creation, construct the growth model in MATLAB, and compare it to industrial data 𝑘𝑘1 = MATHEMATICAL MODELING 2.1 Model Definition When brewing beer, the fermentation step is subsequent to malting and mashing and involves converting sugars to alcohol The previous steps cover wetting and drying barley grains to form malt, then boil and mix the malt to create a sugary liquid called WORT The fermentation starts as soon as the WORT has been cooled down (< 20°C) and added yeast The yeast strain examined in this sample grows at temperatures close to 12°C, which is suitable for lager brewing Mathematical modelling on a first-principles basis for systematic process simulation and optimization is well established in a variety of sectors Its criticality for ensuring maximum process efficiency and profitability becomes clear when applied to unconventional applications such as hightemperature multiple reactor design (Rodman and Gerogiorgis, 2016), fossil fuel production, polygeneration (Liu, I Gerogiorgis and N Pistikopoulos, 2007)), cyclic dynamics (Akinlabi et al., 2007) and structured products (Angelopoulos, Gerogiorgis and Paspaliaris, 2013) 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖 𝑐𝑐𝑥𝑥 𝑖𝑖 = 1,2,3 The fermentation mechanisms depend on the yeast concentration and the reaction rate constant, ki can be described using Michaelis Menten kinetics(Johnson and Goody, 2011) 𝑘𝑘𝐺𝐺𝑐𝑐𝐺𝐺 (5) 𝑘𝑘𝐺𝐺 +𝑐𝑐𝐺𝐺 High sugar concentrations also inhibit the last two reactions 𝑘𝑘𝑁𝑁𝑐𝑐𝑁𝑁 𝐾𝐾`𝐺𝐺 𝐾𝐾𝑁𝑁 + 𝑐𝑐𝑁𝑁 𝐾𝐾`𝐺𝐺 + 𝑐𝑐𝐺𝐺 𝑘𝑘𝑁𝑁𝑐𝑐𝑁𝑁 𝐾𝐾`𝐺𝐺 𝐾𝐾`𝑀𝑀 𝑘𝑘3 = 𝐾𝐾𝑁𝑁 + 𝐶𝐶𝑁𝑁 𝐾𝐾`𝐺𝐺 + 𝑐𝑐𝐺𝐺 𝐾𝐾`𝑀𝑀 + 𝑐𝑐𝑀𝑀 (6) 𝑘𝑘2 = (7) 𝑘𝑘𝐺𝐺 , 𝑘𝑘𝑀𝑀 and 𝑘𝑘𝑁𝑁 are the maximum velocities, 𝐾𝐾 the Michaelis– Menten constant, and 𝐾𝐾′ an inhibition constant for the fermentation reaction These three properties are temperaturedependent, as defined by the Arrhenius equation −𝐸𝐸 𝑘𝑘𝑗𝑗 = 𝐴𝐴𝑗𝑗 𝑒𝑒 𝑅𝑅𝑅𝑅 𝑗𝑗 = 𝐺𝐺, 𝑀𝑀, 𝑁𝑁 (8) 𝐾𝐾𝑗𝑗 = (10) 𝐾𝐾𝑗𝑗 = −𝐸𝐸𝑁𝑁𝑁𝑁 𝐴𝐴𝐻𝐻𝐻𝐻 𝑒𝑒 𝑅𝑅𝑅𝑅 −𝐸𝐸𝐻𝐻𝐻𝐻 𝐴𝐴𝐻𝐻𝐻𝐻 𝑒𝑒 𝑅𝑅𝑅𝑅 (9) Here, A is the frequency factor, and E is the activation energy The yeast concentration is modeled as a free species, with the following reaction rate 𝑅𝑅𝑥𝑥 = 𝑘𝑘𝑥𝑥 𝑐𝑐𝑥𝑥 (11) Where 𝑘𝑘𝑥𝑥 is the reaction rate constant that depends on the reaction constant of the three governing reactions and the fact that a high yeast concentration inhibits its production: 𝑘𝑘𝑥𝑥 = (𝑌𝑌𝑋𝑋1 𝑘𝑘1 + 𝑌𝑌𝑋𝑋2𝑘𝑘2 + 𝑌𝑌𝑋𝑋3𝑘𝑘3 ) ( 𝐾𝐾𝑋𝑋 𝐾𝐾𝑋𝑋 +(𝑐𝑐𝑥𝑥 −𝑐𝑐𝑥𝑥0 )2 ) (12) Where 𝑘𝑘𝑋𝑋 is the yeast growth inhibition constant and cx0 the initial yeast concentration in the tank The alcohol production needs to be corrected with yield coefficients, giving the following total reaction rate 2.2 Reaction Kinetics The irreversible reactions taking place during the fermentation process can be written in the following simplified form: RE = (𝑌𝑌𝐸𝐸1 𝐾𝐾1 + 𝑌𝑌𝐸𝐸2𝐾𝐾2 +𝑌𝑌𝐸𝐸3𝐾𝐾3 ) cx (13) Similarly, the production of the ethyl acetate flavor compound can be written as 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 )𝑐𝑐𝑥𝑥 𝐺𝐺 𝑥𝑥 → 𝐸𝐸 + 𝐶𝐶𝑂𝑂2 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (2) 𝑀𝑀 𝑥𝑥 → 𝐸𝐸 + 𝐶𝐶𝑂𝑂2 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (3) 𝑁𝑁 The acetaldehyde flavor, on the other hand, also decomposes, as given by (4) 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 =𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴 (𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 a)𝑐𝑐𝑥𝑥 − 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑥𝑥 𝑥𝑥 → 𝐸𝐸 + 𝐶𝐶𝑂𝑂2 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Where G, M, and N denote glucose, maltose, and maltotriose, respectively Furthermore, E stands for alcohol and 𝐶𝐶𝐶𝐶2 for the carbon dioxide dissolved in the WORT The X notation shows the presence of yeast Aside from carbon dioxide and ethanol, different flavoring components are formed This tutorial accounts for two types of flavors: Ethyl acetate (EtAc) and acetaldehyde (𝐴𝐴𝐴𝐴𝐴𝐴) The former an ester gives a desirable taste, and the latter an aldehyde gives a bad tasting beer (14) (15) Where 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 is the rate constant for the decomposition of acetaldehyde and is defined with the Arrhenius equation Both the gaseous and dissolved carbon dioxide are computed in the example The reaction rate of the gaseous species is described by 𝑅𝑅𝑐𝑐𝑜𝑜2(𝑔𝑔)=(𝑌𝑌𝐶𝐶 𝑘𝑘1 + 𝑌𝑌𝐶𝐶2 𝑘𝑘2 + 𝑌𝑌𝐶𝐶3 𝑘𝑘3 )𝑐𝑐_𝑥𝑥 − 𝐾𝐾𝐺𝐺𝐺𝐺 (𝐶𝐶𝑐𝑐𝑜𝑜2(𝑠𝑠𝑠𝑠𝑠𝑠) − 𝐶𝐶𝑐𝑐𝑜𝑜2 (𝑙𝑙) ) (16) Where 𝐾𝐾𝐺𝐺𝐺𝐺 is the gas to liquid mass transfer coefficient of carbon dioxide and 𝑐𝑐𝑜𝑜2 (sat) the maximum solubility concentration of carbon dioxide in water Raju Yerolla et al / IFAC PapersOnLine 55-1 (2022) 381–386 For the dissolved species, the reaction rate becomes 𝑅𝑅𝐶𝐶𝑂𝑂2 (𝑔𝑔) = 𝐾𝐾𝐺𝐺𝐺𝐺 (𝐶𝐶𝑐𝑐𝑐𝑐2(𝑠𝑠𝑠𝑠𝑠𝑠) − 𝐶𝐶𝑐𝑐𝑐𝑐2(𝑙𝑙) )) (17) Table Reaction Parameters (Gee and Ramirez, 1994) Paramet ers Value 𝐸𝐸𝐺𝐺 𝐸𝐸𝑀𝑀 𝐸𝐸𝑁𝑁 𝐸𝐸𝐻𝐻𝐻𝐻 𝐸𝐸𝐻𝐻𝐻𝐻 𝐸𝐸𝐻𝐻𝐻𝐻 ′′ 𝐸𝐸𝐻𝐻𝐻𝐻 ′′ 𝐸𝐸𝐻𝐻𝐻𝐻 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐺𝐺 𝐴𝐴𝑀𝑀 𝐴𝐴𝑁𝑁 𝐴𝐴𝐻𝐻𝐻𝐻 𝐴𝐴𝐻𝐻𝐻𝐻 𝐴𝐴𝐻𝐻𝐻𝐻 9.46 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 4.73 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 3.00 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 −2.87 ∙ 105 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 −6.03 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 −8.33 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 4.27 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 1.10 ∙ 105 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 4.64 ∙ 104 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 9.51 ∙ 1011 1/𝑠𝑠 3.68 ∙ 103 1/𝑠𝑠 1.10 ∙ 101 1/𝑠𝑠 2.09 ∙ 10−53 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 3.40 ∙ 10−9 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 2.34 ∙ 10−12 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 Para Value mete rs 𝐴𝐴′𝐻𝐻𝐻𝐻 1.36 ∙ 1010 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 𝐴𝐴′𝐻𝐻𝐻𝐻 1.42 ∙ 1024 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 9.13 𝑚𝑚3 /(𝑠𝑠 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚) 𝑌𝑌𝑋𝑋1 0.134 𝑌𝑌𝑋𝑋2 0.268 𝑌𝑌𝑋𝑋3 0.402 𝑌𝑌𝐸𝐸1 1.92 𝑌𝑌𝐸𝐸2 3.84 𝑌𝑌𝐸𝐸3 5.76 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 9.92 ∙ 10−4 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴 1.00 ∙ 10−2 𝐾𝐾𝑋𝑋 3.65 ∙ 105 𝑚𝑚𝑚𝑚𝑚𝑚2 /𝑚𝑚6 𝐾𝐾𝐺𝐺𝐺𝐺 1.94 ∙ 10−5 1/𝑠𝑠 𝑐𝑐𝐶𝐶𝐶𝐶2(𝑠𝑠𝑠𝑠𝑠𝑠) 3.90 ∙ 102 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚3 The perfectly mixed model is solved with the Reaction Engineering interface using the Batch, constant volume, reactor type at non-isothermal conditions For the three reactions, heats are available: H1 =91.2 kJ/mol, H2=226.3 kJ/mol, and H2=361.3 kJ/mol, which are entered into the energy balance settings the interface WORT mixture is assumed to have similar thermal properties as water That is, water is included as a solvent A cooling medium, with a temperature, ΔTC, lower than the initial tank temperature cools the fermentation process with the rate, qv (SI unit: W/ (m3·K)): 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = −𝑞𝑞𝑣𝑣(𝑇𝑇 − (𝑇𝑇0 − ∆𝑇𝑇𝐶𝐶)) (18) Where 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 is the total heat removed from the reactor (SI unit: W) Beer fermentation usually takes place in a sphero-conical tank Such a design is suitable for easy separation of yeast from the liquid at the top or bottom, enabling better temperature control Modern beer brewing equipment often has a built-in cooling jacket, but the tank is sometimes just in a cooled environment The Generate Space-Dependent Model feature is used to construct the space-dependent model Thus, the kinetics are identical to those in the completely mixed model Due to rotational symmetry, the whole system may be described in two dimensions using an axisymmetric geometry The interface Transfer of Diluted Species is used to simulate mass transport, the Laminar Flow interface is used to model fluid motion, and the Heat Transfer in Fluids interface is used to model heat transport The WORT occupies a portion of the reactor The cooling is implemented as a convective heat flux boundary condition that is driven by the temperature differential between the tank and the cooling fluid, as stated in: 𝑞𝑞 = ℎ(𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇) (19) Where h is an automatically defined heat transfer coefficient for external natural convection 383 The only source of mixing is natural convection, which is achieved by the coupling of all three interfaces As an assumption, the only property affecting the density of the mixture is the temperature Also, the Business approximation is used, meaning that in the single-phase flow interface, the density is only varied in the volume force term 2.3 A Beer Flavor Model The flavour model for batch beer fermentation employed in this study is based on the growth model developed by (Gee and Ramirez, 1994) Three fundamental sugars are deemed safe to consume 𝑑𝑑𝑑𝑑 = −𝜇𝜇1 𝑋𝑋 𝑑𝑑𝑑𝑑 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (20) 𝑑𝑑𝑑𝑑 = −𝜇𝜇2 𝑋𝑋 𝑑𝑑𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (21) 𝑑𝑑𝑑𝑑 = −𝜇𝜇3 𝑋𝑋 𝑑𝑑𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (22) The particular growth rates for maltose and malt triose are shown below, demonstrating that glucose inhibits maltose growth and that both glucose and maltose suppress malt triose development: 𝜇𝜇1 = 𝜇𝜇3 = 𝜇𝜇𝐺𝐺 𝐺𝐺 𝐾𝐾𝐺𝐺 +𝐺𝐺 𝜇𝜇𝑁𝑁 𝑁𝑁 𝐾𝐾𝑁𝑁 + 𝑁𝑁 𝜇𝜇2 = 𝜇𝜇𝑀𝑀 𝑀𝑀 ′ 𝐾𝐾𝐺𝐺 (23) ′ +𝐺𝐺 𝐾𝐾𝑀𝑀 +𝑀𝑀 𝐾𝐾𝐺𝐺 𝐾𝐾𝐺𝐺′ 𝐾𝐾𝑀𝑀′ 𝐾𝐾𝐺𝐺′ + 𝐺𝐺 𝐾𝐾𝑀𝑀′ + 𝑀𝑀 (24) The temperature dependency of these specific growth rates is: 𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑖𝑖0 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝐸𝐸𝜇𝜇𝜇𝜇 𝑅𝑅𝑅𝑅 𝐸𝐸𝐾𝐾𝐾𝐾 𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑖𝑖0 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝐾𝐾𝑖𝑖′ = ′ 𝐾𝐾𝑖𝑖0 ) , 𝑖𝑖 = 𝐺𝐺, 𝑀𝑀, 𝑁𝑁 𝑅𝑅𝑅𝑅 ′ 𝐸𝐸𝐾𝐾𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑅𝑅𝑅𝑅 (25) ) , 𝑖𝑖 = 𝐺𝐺, 𝑀𝑀, 𝑁𝑁 (26) ) , 𝑖𝑖 = 𝐺𝐺, 𝑀𝑀, N (27) As explained by, the rate of biomass formation incorporates an inhibitory component into the biomass concentration (Gee and Ramirez, 1994) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑋𝑋 𝑋𝑋 (28) Where 𝜇𝜇𝑋𝑋 = (𝑌𝑌𝑋𝑋𝑋𝑋 𝜇𝜇1 + 𝑌𝑌𝑋𝑋𝑋𝑋 𝜇𝜇2 + 𝑌𝑌𝑋𝑋𝑋𝑋 𝜇𝜇3 ) 𝐾𝐾𝑋𝑋 𝐾𝐾𝑋𝑋 + (𝑋𝑋 − 𝑋𝑋0 )2 (29) The percentage of ethanol produced to sugar consumed is considered to be proportionate 𝐸𝐸 = 𝐸𝐸0 + 𝑌𝑌𝐸𝐸𝐸𝐸 (𝐺𝐺0 − 𝐺𝐺) + 𝑌𝑌𝐸𝐸𝐸𝐸 (𝑀𝑀0 − 𝑀𝑀) + 𝑌𝑌𝐸𝐸𝐸𝐸 (𝑁𝑁0 − 𝑁𝑁) (30) The batch temperature (T) is determined by an energy balance that takes into account both the heat generated by the reaction and the cooling capacity used to manage the operation 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = (∆𝐻𝐻𝑟𝑟𝑟𝑟 + ∆𝐻𝐻𝑟𝑟𝑟𝑟 + ∆𝐻𝐻𝑟𝑟𝑟𝑟 − 𝑢𝑢(𝑇𝑇 − 𝑇𝑇𝑐𝑐 )) 𝑑𝑑𝑑𝑑 𝜌𝜌𝑐𝑐𝑝𝑝 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (31) Here u is the control variable of the cooling rate per volume per degree, and 𝑇𝑇𝐶𝐶 is the coolant temperature 2.4 Nutrient Model It has been shown that amino acids influence the synthesis of flavour molecules As a result, the amino acids leucine (L), isoleucine (I), and valine are represented by a distinct nutrition model (V) Assimilation of amino acids is thought Raju Yerolla et al / IFAC PapersOnLine 55-1 (2022) 381–386 384 to be negatively proportional to growth rate, limited by the amino acid's availability in the medium, and preceded by a lag phase at the start of fermentation 𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −𝑌𝑌𝐿𝐿𝐿𝐿 = −𝑌𝑌𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑 𝐷𝐷𝐷𝐷 𝐿𝐿 𝑑𝑑𝑑𝑑 𝐾𝐾𝐿𝐿 +𝐿𝐿 𝑑𝑑𝑑𝑑 𝐼𝐼 𝑑𝑑𝑑𝑑 𝐾𝐾𝐼𝐼 +𝐼𝐼 𝑉𝑉 𝑑𝑑𝑑𝑑 = −𝑌𝑌𝑉𝑉𝑉𝑉 𝐷𝐷 (32) 𝐷𝐷 𝑑𝑑𝑑𝑑 𝐾𝐾𝑉𝑉 +𝑉𝑉 (33) 𝐷𝐷 (34) Where the lag effect is given by −𝑡𝑡 𝐷𝐷 = − 𝑒𝑒 𝜏𝜏𝑑𝑑 (35) 2.5 Flavour model There are four broad kinds of taste chemicals studied These are fusel alcohols that should be avoided at all costs and esters that should be present in significant quantities These vicinal diketones should be used in moderation, as should acetaldehyde Fusel alcohols: Fusel alcohols are undesirable species because they provide a plastic, solvent-like odour and add significantly to the symptoms associated with a hangover The model is based on the assumption of enzymatic synthesis at the right amino acid concentration Isobutyl alcohol (IB), isoamyl alcohol (IA), 2-methyl-1-butanol (MB), and propanol are considered fusel alcohols (P) 𝑑𝑑𝐼𝐼𝐵𝐵 = 𝑌𝑌𝐼𝐼𝐼𝐼 𝜇𝜇𝑉𝑉 𝑋𝑋 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑀𝑀𝑀𝑀 𝜇𝜇𝐼𝐼 𝑋𝑋 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑌𝑌𝐼𝐼𝐼𝐼 𝜇𝜇𝐿𝐿 𝑋𝑋 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑃𝑃𝑃𝑃 (𝜇𝜇𝑉𝑉 + 𝜇𝜇𝐼𝐼 )𝑋𝑋 (36) (37) 2.6 Ester Esters are desired flavour components since they contribute significantly to beer scent and give the beer a full-bodied taste The model takes three esters into account: ethyl acetate (𝐸𝐸𝐴𝐴 ), ethyl caproate (𝐸𝐸𝐶𝐶 ) and isoamyl acetate (𝐼𝐼𝐴𝐴𝐴𝐴 ) They are proportional to amino acid intake rates, growth rates, or sugar consumption rates, depending on the model 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑌𝑌𝐸𝐸𝐸𝐸 (𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 )𝑋𝑋 (38) RESULTS AND DISCUSSION This simulation's temperature profile is derived from the McCollum brewery (Breweries, et al) For 250 hours, the model is simulated MATLAB simulations are used, and the results are presented here Figure 1: Esters formation results 3.2 Fusel Alcohol Fusel alcohols are derived from amino acids If amino acid consumption is high, fusel alcohol formation is high Further fusel alcohols are subjected to form esters Isoamyl alcohol, 2-methyl-1-butanol and n-propanol final concentrations are below threshold levels as shown in Figure and compared with industrial data Which gives solvent (alcohol) like flavor n-propanol has a high threshold level, and the effect of flavor is negligible The final concentration of isoamyl alcohol is slightly above the threshold values and gives a solvent, banana-like flavor Simulations results give values around 63 mg/l Isoamyl alcohol is derived from leucine, and leucine is almost totally consumed in simulations The presence of fusel alcohols in the beer gives strong physiological symptoms like a headache Keeping low concentrations of fusel alcohols increases the flavor quality of the beer But any threshold limits for these symptoms could not be found in the literature 3.1 Esters Esters are the most flavour-active aroma in the beer These compounds are formed via alcohols (fusel and ethanol) reaction and acids (acetyl-CoA compounds) The enzymes catalyse the reactions within the yeast cell Looking over the final concentrations as shown in Figure at 250 hours and compared with industrial data, the ester levels are reached their maximum and no further increase by increasing the fermentation time Ethyl acetate concentrations for temperature profiles are slightly higher than threshold limits, which mean less contribution for the fruity flavour The final percentage concentrations of ethyl corporate above the threshold limits, i.e., 328% For the isoamyl acetate, it is about 100%-300% higher than the threshold values Ethyl caproate gives apple-like flavour, and isoamyl acetate gives banana like flavour to the beer Therefore, the final product should be a mixture of these two flavours Figure Fusel alcohol formation model 3.3 Growth Model Raju Yerolla et al / IFAC PapersOnLine 55-1 (2022) 381–386 In the growth model simulation, glucose is zero and maltose and maltotriose 33% and 48% remaining, as shown in Figure and compared with industrial data Rest sugar of the fermented beer is a good measurement to make sure the fermentation is going well It should be consumed with time The presence of sugars gives a sweet flavour to the beer Therefore, the temperature profile in the growth model simulation gives more sweetness On the other hand, rest sugars will affect ethanol production More sugars are remaining in the beer means raw materials are not completely consumed For maximizing ethanol production, all the sugars must be consumed over fermentation time Growth model simulation gives lower ethanol production since the brewing temperature is somewhat low (120 C) Yeast production of growth model simulation gives 44.8% from initial concentrations, respectively More sugar consumption will give more yeast growth Normally the yeast is collected in the bottom of the fermentation tank at the end of the fermentation by cooling and subject to reuse More yeast production increases the number of reusing cycles and it will also lead to the production of wild yeast, which is not good for fermentation Therefore a number of reusing cycles is always limited 385 Figure Nutrient model simulation results 3.5 Temperature profile The temperature profile is taken from referring optimization of batch fermentation process Simulation is run for 250h time period Model is implemented in MATLAB only Temperature profile can be optimized in order to get appropriate flavor concentrations by using this model as shown in the Figure 3.6 Vicinal Diketones Diacetyl and 2, 3-pentamidine are considered as VDKs VDK gives buttery or butterscotch flavor to the very undesirable beer Therefore, VDK concentrations should be kept at low It is much better if it could be eliminated Diacetyl is more flavor-active compound, and its threshold value is considered as VDK threshold value Yeast at the bottom of the fermentation tank to recover and reuse By lowering the temperature is affected to the VDK production and will be increased 105 again Increasing fermentation time is not help to decrease VDK levels The presence of a considerable percentage of VDK above the threshold value could lead to the final product's flavor Figure Growth model simulation results 3.4 Nutrient Model Three amino acids are considered here, and they help to produce fusel alcohols and finally esters For the 250 hours, the remaining leucine, isoleucine, and valine concentrations for simulation, the values are 1.6%, 3.8% and 37% are shown in Figure and compared with industrial data, respectively Amino acids should be supplied externally to the yeast cell for growth since they cannot be produced within the cell Leucine and isoleucine is almost consumed, but valine is present at a considerable amount These amino acids lead to produce fusel alcohols The presence of fusel alcohols in higher concentrations in the final product leads to physiological symptoms after drinking However, fusel alcohols may be subjected to produce esters finally VDKs are produced early in the fermentation and consumed later in the fermentation Under industrial temperature profiles, a considerable VDK amount is present above the threshold value Simulation give 250% above the threshold value as shown in Figure and compared with industrial data It seems that the final phase of the fermentation VDK concentrations is increased rather than decreased This is because of the nature of the temperature profile The final phase of the fermentation temperature is brought down to lower to precipitate yeast at the bottom of the fermentation tank to recover and reuse By lowering the temperature is affected to the VDK production and will be increased again Increasing fermentation time is not help to decrease VDK levels The considerable percentage of VDK above the threshold value could lead to off flavor of the final product 386 Raju Yerolla et al / IFAC PapersOnLine 55-1 (2022) 381–386 REFERENCES Akinlabi, C O et al (2007) ‘Modelling, design and optimisation of a hybrid PSA-membrane gas separation process’, Computer Aided Chemical Engineering, 24, pp 363–370 doi: 10.1016/S1570-7946(07)80084-8 Angelopoulos, P M., Gerogiorgis, D I and Paspaliaris, I (2013) ‘Model-Based Sensitivity Analysis and Experimental Investigation of Perlite Grain Expansion in a Vertical Electrical Furnace’, Industrial and Engineering Chemistry Research, 52(50), pp 17953–17975 doi: 10.1021/IE401144R Arnold, J P (2005) ‘Origin and History of Beer and Brewing from prehistoric times to the beginning of brewing science ans technology: a critical essay, Beerbooks.com Figure Temperature profile of batch fermentation process Aroh, K (2019) ‘Review: Beer Production’, SSRN Electronic Journal doi: 10.2139/ssrn.3458983 Breweries, M McCallum Breweries, McCallum Breweries (Ceylon) Ltd, Sri Lanka Available at: https://www.beverageworld.com/en/company/mccallum-breweries-ceylon-ltdcolombo-2194139 (Accessed: 15 September 2021) Gee, D A and Ramirez, W F (1994) ‘A flavour model for beer fermentation, Journal of the Institute of Brewing, 100(5), pp 321–329 doi: 10.1002/j.2050-0416.1994.tb00830.x Guido, L F et al (2004) ‘The impact of the physiological condition of the pitching yeast on beer flavour stability: An industrial approach’, Food Chemistry, 87(2), pp 187–193 doi: 10.1016/j.foodchem.2003.10.033 Harrison, M A and Albanese, J B (2019) ‘Beer/Brewing’, in Encyclopedia of Microbiology Elsevier, pp 467–477 doi: 10.1016/B978-0-12-809633-8.13014-6 Johnson, K A and Goody, R S (2011) ‘The original Michaelis constant: Translation of the 1913 MichaelisMenten Paper’, Biochemistry, 50(39), pp 8264–8269 doi: 10.1021/bi201284u Figure Vicinal diketones and Acetaldehyde CONCLUSIONS This research looked at the changes in esters, yeast, and alcohols during the process In addition, a model was created, implemented, and simulated in MATLAB, and the results were analyzed and compared with the industrial data A taste model was created The flavor model for beer fermentation used in this study is based on the idea of (Gee and Ramirez, 1994) Taste molecules have been synthesized using amino acids The taste model is predicated on enzymatic production at the appropriate amino acid concentration Esters are assumed to be proportionate to rates of amino acid, growth, or sugar consumption The three sugars deteriorate with time, and the alcohol content surpasses 5% vol Ethyl caproate gives the beer an apple flavor, and isoamyl acetate gives it a banana flavor As a result, the completed product should have a mix of these two flavors Increased fermentation period increases amino acid consumption and the production of fusel alcohols De Keukeleirc, D (2000) ‘Fundamentals of beer and hop chemistry’, Quimica Nova, 23(1), pp 108–112 doi: 10.1590/s0100-40422000000100019 Liu, P., I Gerogiorgis, D and N Pistikopoulos, E (2007) ‘Modelling, investment planning and optimisation for the design of a polygeneration energy system’, Computer Aided Chemical Engineering, 24, pp 1095–1102 doi: 10.1016/S1570-7946(07)80207-0 Luisa, Alba-Lois, & C S.-K (2010) ‘Yeast Fermentation and the Making of Beer and Yeast Fermentation and the Making of Beer and Wine’, Nature Education, 3(9), pp.17 Ramirez, W F and Maciejowski, J (2007a) ‘Optimal beer fermentation’, Journal of the Institute of Brewing, 113(3), pp 325–333 doi: 10.1002/j.2050-0416.2007.tb00292.x Rodman, A D and Gerogiorgis, D I (2016) ‘Multiobjective process optimisation of beer fermentation via dynamic simulation’, Food and Bioproducts Processing, 100, pp 255–274 doi: 10.1016/j.fbp.2016.04.002 ... để hồn thiện đề tài tiểu luận về: ? ?BIA? ?? Lời cam đoan Chúng em xin cam đoan đề tài: BIA cá nhân/nhóm 11 nghiên cứu thực Chúng em kiểm tra liệu theo quy định hành Kết làm đề tài: BIA trung thực... đẩy mạnh xuất Để tạo bia đạt chất lượng thu hút quan tâm nhiều người trình lên men bia nhân tố quan trọng Chất lượng bia xem kết từ trình hoạt động nấm men Vì thế, để có bia chất lượng đáp ứng... trung thực không chép từ tập nhóm khác Các tài liệu sử dụng tiểu luận có nguồn gốc, xuất xứ rõ ràng (Ký ghi rõ họ tên) NHÓM 11 Tổng quan bia 1.1 Giới thiệu Bia đồ uống lâu đời người tạo Đây loại