1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề và đáp án thi thử đại học môn toán - Đề số 2 ppt

10 395 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 215,29 KB

Nội dung

ĐỀ 2 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 ĐIỂM): Bài 1. Cho hàm số ( ) 2 1 1 2 x y x − = − có đồ thị ( ) H . 1. Khảo sát sự biến thiên vẽ đồ thị (C) của hàm số (1) 2. Đường thẳng ( ) d đi qua điểm ( ) 4;4P cắt (H) tại 2 điểm phân biệt ;A B cắt hai tia ,Ox Oy lần lượt tại ;M N sao cho tam giác OMN có diện tích nhỏ nhất. Viết phương trình tiếp tuyến của ( ) H tại ;A B . Bài 2. 1. Giải phương trình: cos3x.cos 3 x – sin3x sin 3 x = 2. Giải hệ phương trình: Bài 3. I= ∫ +−+ 4 2 3 121 xx dx Bài 4. Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với trọng tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ theo một thiết diện có diện tích bằng 8 3 2 a . Tính thể tích khối lăng trụ ABC.A’B’C’. Bài 5. Cho 3 số dương a, b, c. Tìm giá trị lớn nhất của: P = + II. PHẦN RIÊNG ( 3 ĐIỂM): A. Theo chương trình chuẩn: Bài 6A. . 4121 .21 2 2      −=− =+ xyyzx xyz 1. Viết phương trình các cạnh của tam giác ABC, biết B=(2;-1), đường cao kẻ từ A phân giác của góc C có phương trình lần lượt là: 3x – 4y + 27 = 0 x + 2y – 5 = 0. 2. Trong không gian với hệ tọa độ Oxyz cho ( ) 0;0;3A , ( ) 2; 3; 6M − − − . Điểm 'M thỏa ( ) mp Oxy là mặt phẳng trung trực của 'MM . Điểm B là giao điểm của đường thẳng ( ) 'AM ( ) mp Oxy .Viết phương trình mặt cầu (S) tâm B tiếp xúc với ( ) mp Oxz Bài 7A. Tìm số tự nhiên k thỏa mãn hệ thức: = 2 B. Theo chương trình nâng cao: Bài 6B. 1. Viết phương trình đường tròn đi qua điểm P(1;1), tiếp xúc với hai đường thẳng 7x + y – 3=0; x + 7y – 3=0 2. Trong mặt phẳng toạ độ Oxy, hãy xác định toạ độ các đỉnh tam giác ABC vuông cân tại A . Biết cạnh huyền nằm trên đường thẳng d : 0317 =−+ yx , điểm )7;7(N thuộc đường thẳng AC , điểm )3;2( −M thuộc đường thẳng AB . Bài 7B. Giải hệ phương trình: ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm I (2 điểm) Cho hàm số ( ) 2 1 1 2 x y x − = − có đồ thị ( ) H . 1.Khảo sát sự biến thiên vẽ đồ thị (C) của hàm số (1) 2.Đường thẳng ( ) d đi qua điểm ( ) 4;4P cắt (H) tại 2 điểm phân biệt ;A B cắt hai tia ,Ox Oy lần lượt tại ;M N sao cho tam giác OMN có diện tích nhỏ nhất. Viết phương trình tiếp tuyến của ( ) H tại ;A B . 1.Khảo sát sự biến thiên vẽ đồ thị (C) của hàm số (1) TXĐ: D = R\{2}, y’= < 0, x D Hàm số nghịch biến trên từng khoảng xác định 0,25 Giới hạn tiệm cận: = -, = +; tiệm cận đứng: x=2 = = 2 ; tiệm cận ngang: y=2 0,25 Bảng biến thiên : 0,25 Đồ thị 0,25 2. Đường thẳng ( ) d đi qua điểm ( ) 4;4P cắt (H) tại 2 điểm phân biệt ;A B cắt hai tia ,Ox Oy lần lượt tại ;M N sao cho tam giác OMN có diện tích nhỏ nhất. Viết phương trình tiếp tuyến của ( ) H tại ;A B . Đường thẳng ( ) ( ) : 1 0, 0 x y d a b a b + = > > Đường thẳng (d) đi qua điểm ( ) 4 4 4;4 1P a b ⇒ + = Ta có 4 4 4.4 8 1 2 8 64ab ab a b ab ab = + ≥ = ⇔ ≥ ⇔ ≥ 0,25 1 32 2 OMN S ab ∆ = ≥ suy ra 32 8 4 4 1 OMN a b S a b a b ∆ =   = ⇔ ⇔ = =  + =   Vậy OMN S ∆ nhỏ nhất bằng 32 khi ( ) 8 : 8a b d y x= = ⇒ = − + 0,25 Giao điểm của (d) (H) là ( ) ( ) 3;5 ; 5;3A B ( ) ( ) 3 ' 3 3; ' 5 4 f f= − = − 0,25 Phương trình tiếp tuyến của (H) tại ( ) 3;5A là ( ) 3 3 5 3 14y x x= − − + = − + Phương trình tiếp tuyến của (H) tại ( ) 5;3A là ( ) 3 3 27 5 3 4 4 4 y x x= − − + = − + 0,25 II (2 điểm) 1.Giài phương trình: cos3x.cos 3 x – sin3x sin 3 x = , (1) Phương trình (1)  cos 2 x.(cos4x + cos2x) – sin 2 x.( –cos4x + cos2x) =  cos 2 x.cos4x + cos 2 x.cos2x + sin 2 x.cos4x – sin 2 x.cos2x = 0,25  cos4x.(sin 2 x + cos 2 x) + cos2x.(cos 2 x – sin 2 x) =  cos4x + cos 2 2x =  4cos4x + 4. = 2 – 3 0,25  cos4x = 0,25  4x =  x = Vậy, phương trình đã cho có nghiệm: x = 0,25 2. Giải hệ phương trình: . Mà tồn tại khi chỉ khi : . 0,25 Do đó ta có hệ: 0,25 0,25 Vậy: nghiệm của hệ: (x;y;z) = (1;. 0,25 III (1 điểm) I= ∫ +−+ 4 2 3 121 xx dx Đặt t= 12 + x ⇒ 12 2 += xt ⇒ tdt=dx 0,25 +Đổi cận : x= 2 3 ⇒ t = 2 0,25 . 4121 .21 2 2      −=− =+ xyyzx xyz 4 1 112 2 ≥⇒≥+= xyzxy 4 1 041 ≤⇔≥− xyxy        ±= ±= = ⇔          =− =+ = ⇔          = =− =+ ⇔          −=− =+ = 4 1 1 0 01 11 4 1 4 1 01 2 1 .21 4121 .21 4 1 2 2 2 2 2 2 y x z x z xy xy x z xyyzx xyz xy A B C C’ B’ A’ H O M x=4 ⇒ t = 3 +Khi đó I= ∫ −+ − 3 2 2 1 2 1 t t tdt = ∫ − 3 2 2 )1( 2 t tdt ⇔ I = dt t t ∫ − +− 3 2 2 )1( 11 = ∫∫ − + − 3 2 2 3 2 )1( 2 )1( 1 2 t dt dt t = 3 2 3 2 1 2 1ln2 − −− t t =2ln2+1 0,25 Vậy I= 2ln2+1 0,25 IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với trọng tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC vuông góc với AA’, cắt lăng trụ theo một thiết diện có diện tích bằng 8 3 2 a . Tính thể tích khối lăng trụ ABC.A’B’C’. Gọi M là trung điểm của BC, gọi H là hình chiếu vuông góc của M lên AA’, Khi đó (P) ≡ (BCH). Do góc nhọn nên H nằm giữa AA’. Thiết diện của lăng trụ cắt bởi (P) là tam giác 0,25 BCH. Do tam giác ABC đều cạnh a nên 3 3a AM 3 2 AO, 2 3a AM === Theo bài ra 4 3a HM 8 3a BC.HM 2 1 8 3a S 22 BCH =⇒=⇒= 4 a3 16 a3 4 a3 HMAMAH 22 22 =−=−= 0,25 Do hai tam giác A’AO MAH đồng dạng nên AH HM AO O'A = suy ra 3 a a3 4 4 3a 3 3a AH HM.AO O'A === 0,25 Thể tích khối lăng trụ: 12 3a a 2 3a 3 a 2 1 BC.AM.O'A 2 1 S.O'AV 3 ABC ==== 0,25 V (1 điểm) Cho 3 số dương a, b, c. Tìm giá trị lớn nhất của: P = + Đặt: x = , y = , z = x, y, z dương Khi đó: P = + + 3P= + + = 3 – + + ) = 3 – R 0,25 Áp dụng BĐT Bu-nhi-a Cốp-ki, ta được: . + . + . ) 2 ≤ Q.( x 2 + y 2 + z 2 + 3xy + 3yz + 3xz)  Q ≥ 0,25 Mặt khác : xy + yz + xz ≤ Suy ra : Q ≥ , do đó : 3P ≤  P ≤ 0,25 Dấu bằng xảy ra  a = b = c Vậy giá trí nhọ nhất của P bằng 0,25 VIa 1.Viết phương trình các cạnh của tam giác ABC, biết B=(2;-1), đường cao kẻ từ A phân giác (2 điểm) của góc C có phương trình lần lượt là: 3x – 4y + 27 = 0 x + 2y – 5 = 0. Vectơ chỉ phương của (BC) là vectơ pháp tuyến của (AH) : =(3 ; -4). Suy ra : phương trình của (BC) là :  4x + 3y – 5 =0 0,25 Tọa độ điểm C là nghiệm của hệ :  Suy ra : C=(-1 ;3) Gọi B’ là điểm đối xứng của B qua phân giác CC 1 . Đường thẳng BB’ có vectơ pháp tuyến là =(2 ;-1) (vectơ chỉ phương của CC 1 ) Suy ra : phương trình (BB’) : 2(x - 2) – (y +1) =0  2x – y – 5 =0 0,25 Tọa độ điểm I của (BB’) (CC 1 ) là nghiệm hệ :  Suy ra :I=(3 ;1)  B’=(4 ;3) Phương trình cạnh AC là y=3 0,25 Từ đó tìm được tọa độ đỉnh A=(-5 ;3) phương trình cạnh AB là 4x + 7y – 1 =0 0,25 2) Trong không gian với hệ tọa độ Oxyz cho ( ) 0;0;3A , ( ) 2; 3; 6M − − − . Điểm 'M thỏa ( ) mp Oxy là mặt phẳng trung trực của 'MM . Điểm B là giao điểm của đường thẳng ( ) 'AM ( ) mp Oxy .Viết phương trình mặt cầu (S) tâm B tiếp xúc với ( ) mp Oxz ( ) mp Oxy là mặt phẳng trung trực của 'MM suy ra , 'M M đối xứng với nhau qua ( ) mp Oxy suy ra ( ) ' 2; 3;6M − − 0,25 Gọi ( ) , ,0B m n là giao điểm của ( ) 'AM ( ) mp Oxy suy ra 3 điểm , ',A M B thẳng hàng suy ra tồn tại số k sao cho 'AB k AM = uuur uuuur ( ) ( ) ; ; 3 ; ' 2; 3;3AB m n AM= − = − − uuur uuuur 0,25 ( ) 2 1 ' 3 2 2;3;0 3 3 3 m k k AB k AM n k m B k n = − = −     = ⇔ = − ⇔ = ⇒     − = =   uuur uuuur 0,25 Mặt cầu (S) tâm B tiếp xúc với ( ) mp Oxz suy ra bán kính 3 B R y= = Phương trình mặt cầu (S): ( ) ( ) 2 2 2 2 3 9x y z− + − + = 0,25 VIIa (1 điểm) Tìm số tự nhiên k thỏa mãn hệ thức: = 2 (1) Điều kiện : 0 ≤ k ≤ 12, k N 0,25 (1) + = 2  + = 2. 0,25  + = 2(k + 2)(14 – k)  k 2 – 12k + 32 =0  k = 4 hay k = 8 0,25 Vậy: k= 4; 8 0,25 VIb (2 điểm) 1.Viết phương trình đường tròn đi qua điểm P(1;1), tiếp xúc với hai đường thẳng 7x + y – 3=0; x + 7y – 3=0 Giả sử phương trình đường tròn cần tìm có dạng: (C): x 2 + y 2 + 2ax + 2by + c =0 P(1;1) thuộc đường tròn nên: 2 + 2a + 2b + c =0 (1) (C) tiếp xúc với hai đường thẳng nên khoảng cách từ tâm I(-a;-b) đến hai đường thẳng bằng nhau, bằng khoảng cách từ I đến P, do đó: = = (2) Từ các hệ thức (2) tìm được a = b = - hoặc a = b = Thay vào (1) tìm được c = 12 hoặc c = Vậy: có hai đường tròn cần tìm là: x 2 + y 2 – 7x – 7y + 12 =0 x 2 + y 2 – x – y + =0 2. Trong mặt phẳng toạ độ Oxy, hãy xác định toạ độ các đỉnh tam giác ABC vuông cân tại A . Biết cạnh huyền nằm trên đường thẳng d : 0317 =−+ yx , điểm )7;7(N thuộc đường thẳng AC , điểm )3;2( − M thuộc đường thẳng AB . §êng th¼ng AB cã pt 0)3()2( =++− ybxa )0( 22 ≠+ ba . Do 45 0 nªn ta cã: 0.25    −= = ⇔=−−⇔ + + == ba ba abba ba ba 34 43 071212 50 7 45cos 2 1 22 22 0 0,25 *Víi 3a=4b chän a=4, b=3, ta cã pt AB: 4x+3y+1=0. V× ABAC ⊥ nªn pt cua AC lµ: 3x-4y+7=0. 0.25 To¹ ®é cña A lµ nghiÖm cña hpt: )1;1( 0743 0134 −⇔    =+− =++ A yx yx . To¹ ®é cña A lµ nghiÖm cña hpt: )3;10( 01843 04934 A yx yx ⇔    =−− =−+ . To¹ ®é cña B lµ nghiÖm cña hpt: BAB yx yx ≡⇒⇔    =−− =−+ )3;10( 01843 0317 (v« lý). VËy, A(-1:1), B(-4:5) vµ C(3;4). 0.25 VIIb (1 điểm) Giải hệ phương trình: Ta có: D= = i – 6 0,25 D= = i + i 2 – 4 + 6i = -5 + 7i 0,25 D = = 2 – 3i – 3 – 3i = -1 -6i 0,25 Suy ra: 0,25 . I= ∫ −+ − 3 2 2 1 2 1 t t tdt = ∫ − 3 2 2 )1( 2 t tdt ⇔ I = dt t t ∫ − +− 3 2 2 )1( 11 = ∫∫ − + − 3 2 2 3 2 )1( 2 )1( 1 2 t dt dt t = 3 2 3 2 1 2 1ln2 − −− t t =2ln2+1 0 ,25 Vậy I= 2ln2+1 0 ,25 IV (1. xyxy        ±= ±= = ⇔          =− =+ = ⇔          = =− =+ ⇔          −=− =+ = 4 1 1 0 01 11 4 1 4 1 01 2 1 .21 4 121 .21 4 1 2 2 2 2 2 2 y x z x z xy xy x z xyyzx xyz xy A B C C’ B’ A’ H O M x=4 ⇒ t = 3 +Khi đó I= ∫ −+ − 3 2 2 1 2 1 t t tdt = ∫ − 3 2 2 )1( 2 t tdt ⇔ I

Ngày đăng: 10/03/2014, 00:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w