1. Trang chủ
  2. » Giáo án - Bài giảng

Sáng kiến kinh nghiệm môn toán 7 định lí pytago

21 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 300 KB

Nội dung

Sáng kiến kinh nghiệm môn toán 7 định lí pytago Báo cáo Sáng kiến kinh nghiệm môn toán 7 định lí pytago

SÁNG KIẾN KINH NGHIỆM MƠN TỐN I PHẦN MỞ ĐẦU Lí chọn đề tài Như biết mơn hình học lớp 7, cách quan trọng để chứng minh tam giác tam giác vng, tìm độ dài cạnh tam giác vuông, chứng minh trường hợp cạnh huyền cạnh góc vng hai tam giác vuông, việc ứng dụng định lí Pytago Thế chương trình lớp 7, tiếp xúc với định lí Pytago, học sinh cịn nhiều bỡ ngỡ, thường lúng túng việc nhận cạnh huyền, cạnh góc vng, hay việc áp dụng định lí Pytago đảo để chứng minh tam giác có vng hay khơng, Chính lí đó, tơi cố gắng đúc kết lại kinh nghiệm trình giảng dạy mình, hy vọng giúp em học sinh có kĩ cần thiết để khắc sâu kiến thức giải tập liên quan đến định lí Pytago, tơi chọn đề tài sáng kiến kinh nghiệm: “Hướng dẫn học sinh vận dụng định lí Pytago vào giải tập hình học lớp Mục đích nghiên cứu * Đối với GV - Nâng cao trình độ chun mơn, phục vụ cho q trình giảng dạy - Làm quen với cơng tác nghiên cứu khoa học để ngày phục vụ cho việc giảng dạy hiệu - Gần gũi với học sinh để nắm bắt điểm mạnh, yếu từ có biện pháp giáo dục phù hợp * Đối với HS - Giúp HS có kĩ vận dụng định lí Pytago vào giải tập hình học - Giúp HS hệ thống số phương pháp nhận biết áp dụng định lí vào số dạng tốn có liên quan - Nâng cao chất lượng giáo dục, rèn luyện tư duy, óc sáng tạo học sinh trung học sở - Giúp hs nhận biết vẻ đẹp mơn tốn biết vận dụng kiến thức học vào thực tế Thời gian- địa điểm - Thời gian: Tiến hành nghiên cứu năm học 2018- 2019 - Chọn đề tài tháng năm 2018 - Áp dụng nghiên cứu triển khai từ tháng năm 2018 đến tháng năm 2019 - Tổng kết đề tài, rút kinh nghiệm trình thực tháng năm 2019 - Địa điểm: Lớp 7A trường PTCS Ngọc Vừng Đóng góp mặt thực tiễn Đối với kiến thức hình học lớp nội dung định lí Pyta go kiến thức trọng tâm để vận dụng vào giải tốn tính đoạn thẳng tam giác vuông… làm tiền đề cho việc tính tốn thơng dụng ngồi học sinh thấy lợi ích mơn Tốn đời sống thực tế, tốn học khơng mơn học rèn luyện tư mà môn học gắn liền với thực tiễn, phát sinh trình hoạt động thực tiễn người quay trở lại phục vụ lợi ích người Là giáo viên dạy tốn tơi mong em chinh phục khơng chút ngần ngại gặp dạng toán Nhằm giúp em phát triển tư suy luận óc phán đốn, kỹ trình bày linh hoạt Hệ thống tập tơi đưa từ dễ đến khó, bên cạnh tập cịn có tập nâng cao dành cho học sinh giỏi lồng vào tiết luyện tập Lượng tập tương đối nhiều nên em tự học, tự chiếm lĩnh tri thức thông qua hệ thống tập áp dụng này, điều giúp em hứng thú học tập nhiều Cùng với việc phát triển đổi đất nước, nghiệp giáo dục đổi không ngừng, nhà trường trọng đến chất lượng toàn diện bên cạnh đầu tư thích đáng cho giáo dục II.PHẦN NỘI DUNG 1.Chương 1: Tổng quan Toán học đời gắn liền với người, với lịch sử phát triển sống xã hội lồi người Nó có lý luận thực tiễn lớn lao quan trọng Số học mơn đặc biệt quan trọng tốn học Nếu sâu nghiên cứu môn số học hẳn chứng kiến nhiều điều lý thú mang lại “Hướng dẫn học sinh vận dụng định lí Pytago vào giải tập hình học lớp 7” đề tài hay hình học, thực lơi nhiều người u tốn học Đề tài mà đề cập khía cạnh vơ vàn khía cạnh khác mơn hình học nói riêng tốn học nói chung Trong năm gần đây, kỳ thi học sinh giỏi bậc THCS kỳ thi tuyển sinh vào trường THPT chuyên thường gặp toán dạng toán Dạng toán phong phú đa dạng, có ý nghĩa quan trọng em học sinh bậc THCS, phải cách giải thơng minh, tìm biện pháp hữu hiệu phù hợp với trình độ kiến thức toán học bậc học để giải loại tốn này, mà tảng nắm định lí Pytago biết áp dụng vào tam giác vuông Dạy tốn khơng đơn dạy cho học sinh nắm định nghĩa, khái niệm, tính chất, quy tắc mà điều quan trọng dạy cho học sinh có lực trí tuệ, có kỹ thực hành, có khả vận dụng phương pháp để vận dụng cách linh hoạt vào giải toán đưa toán học vào ứng dụng thực tế 1.1 Cơ sở lý luận Mơn hình học mơn mơn khó hầu hết em học sinh nói chung em học sinh THCS nói riêng Đối với đối tượng học sinh lớp em rèn luyện kĩ nhận dạng vẽ số hình đơn giản như: đoạn thẳng, đường thẳng, tam giác, đường trịn tính tốn chương trình hình học lớp Trong chương trình hình học lớp kiến thức khái niệm hình học tính tốn đơn giản Ở hình học lớp kiến thức nâng cao bước chứng minh, tính tốn đoạn thẳng, góc liên quan đến tam giác Chúng ta dạy học theo đổi dạy học theo chuẩn kiến thức kỹ Vì gọi chuẩn – cần phải nắm vững Rèn kỹ vận dụng định lí Pytago chuẩn mà học sinh cần phải nắm Hệ thống tập thể dạng toán vận dụng định lí Pytago có vai trị quan trọng giúp cho học sinh phát triển khả tư duy, khả vân dụng kiến thức cách linh hoạt vào giải tốn, trình bày lời giải xác logic, để từ biết áp dụng vào thực tế sống Đó kỹ cần thiết học sinh cịn ngơi ghế nhà trường Có phù hợp với cải tiến dạy học phát huy hết tính tích cực, tư sáng tạo học sinh trường học 1.2 Cơ sở thực tiễn Từ năm 1997 đổi đồng việc xây dựng lại chương trình biên soạn SGK mơn học theo tư tưởng đổi tích cực hố hoạt động học tập học sinh đặt yêu cầu cấp thiết đổi PPDH Được viết vào chương trình mơn tốn THCS Bộ GD ĐT ngày 24/1/2002 SGK tốn tài liệu thức để dạy học trường THCS nước từ năm 2003 - 2004 Học sinh dự toán kiện hình học tiếp cận với định lý Yêu cầu tập dượt suy luận chứng minh tăng dần qua phần, chương hình học Chương có tính chất cơng nhận khơng chứng minh, tính chất thu nhận suy luận, tập suy luận Chương có định lý cơng nhận (định lý Pytago) định lý có chứng minh Chương hầu hết định lý chứng minh hướng dẫn chứng minh Trừ định lý đồng quy đường trung tuyến đường cao SKG toán trọng xây dựng hệ thống câu hỏi, tập đa dạng, phong phú, có tập rèn kỹ tính tốn, vẽ hình, suy luận, có tập rèn kỹ vận dụng tốn học vào mơn học khác đời sống Các tập thể nhiều hình thức, có tập u cầu học sinh sử dụng máy tính bỏ túi để thực phép tính nhanh chóng thuận tiện Hệ thống tập góp phần kích thích óc tị mị gây hứng thú cho học sinh, củng cố kiến thức, rèn luyện kỹ phát triển tư hình học dùng thước chữ T để đo góc nghiêng đê, chọn địa điểm thích hợp để đào giếng Làm để đo khoảng cách điểm bị ngăn cách sông Tính bền vững hình tam giác Hình học giúp khơi dậy hứng thú học tập mơn Tốn hình Giúp em học nhẹ nhàng hào hứng có kết Đối với kiến thức hình học lớp nội dung định lí Pyta go kiến thức trọng tâm để vận dụng vào giải tốn tính đoạn thẳng tam giác vng… làm tiền đề cho việc tính tốn thơng dụng ngồi học sinh thấy lợi ích mơn Tốn đời sống thực tế, tốn học không môn học rèn luyện tư mà môn học gắn liền với thực tiễn, phát sinh trình hoạt động thực tiễn người quay trở lại phục vụ lợi ích người Khi vận dụng định lí Pytago vào tập, yêu cầu kiến thức cần nắm định lí thuận đảo Để vận dụng tốt vào làm tập trước hết học sinh cần phải nắm giả thiết kết luận toán để so sánh với giả thiết kết luận định lí, qua dùng lập luận biến đổi từ giả thiết suy luận phần kết luận Là giáo viên dạy tốn tơi mong em chinh phục khơng chút ngần ngại gặp dạng toán Nhằm giúp em phát triển tư suy luận óc phán đốn, kỹ trình bày linh hoạt Hệ thống tập đưa từ dễ đến khó, bên cạnh tập cịn có tập nâng cao dành cho học sinh giỏi lồng vào tiết luyện tập Lượng tập tương đối nhiều nên em tự học, tự chiếm lĩnh tri thức thông qua hệ thống tập áp dụng này, điều giúp em hứng thú học tập nhiều Cùng với việc phát triển đổi đất nước, nghiệp giáo dục đổi không ngừng, nhà trường trọng đến chất lượng tồn diện bên cạnh đầu tư thích đáng cho giáo dục Vì thế, thiết yếu phải rèn kỹ vận dụng định lí Pytago vào giải tập hình học để làm hành trang kiến thức vững cho em gặp lại dạng toán mức độ nâng cao lớp 2.Chương 2: Nội dung vấn đề nghiên cứu 2.1 Thực trạng: * Khảo sát (thống kê) Kết điều tra sở thích học sinh mơn tốn (năm học 2018- 2019) trường PTCS Ngọc Vừng sau : Lớp 7A Số HS Mơn học ưa thích 17 Đại số Hình học 14 Số liệu chất lượng mơn toán lớp 7A năm học 2017-2018 Tổng số Giỏi Khá TB 17 11 *Đánh giá (phân tích) Qua bảng thống kê ta dễ nhận thấy môn Đại Số Hình học học sinh thích học mơn đại số dễ dàng Cịn mơn hình học hầu hết học sinh khơng thích cảm thấy sợ Thực tế giảng dạy lớp giáo viên nhận thấy rõ điều này, tiết dạy hình học nặng nề tiết dạy đại số Có nhiều nguyên nhân dẫn đến việc học sinh học yếu mơn hình học như: khơng nắm vững lý thuyết, khơng biết vẽ hình, khơng có khả phân tích tốn, định lý để chứng minh, chưa quen sử dụng phương pháp giải dạng tập hình học, Do việc đổi phương pháp dạy hình học xóa tâm lý nặng nề, sợ học hình học sinh điều cần thiết cấp bách hết 2.2 Các giải pháp Khi dạy định lí tơi trọng hướng dẫn em vấn đề trọng tâm sau: 1) Dạy kĩ định lí phương pháp thực hành: a) Yêu cầu học sinh vẽ tam giác vng có cạnh góc vng 3cm, 4cm, sau đo độ dài cạnh huyền b) Thực hành: - Lấy giấy trắng cắt tám tam giác vng nhau.Trong tam giác vng đó, ta gọi độ dài cạnh góc vng a, b, gọi độ dài cạnh huyền c Cắt hai bìa hình vng có cạnh a + b - Đặt bốn tam giác vng lên bìa hình vng hình Phần bìa khơng bị che lấp hình vng có cạnh c, u cầu học sinh tính diện tích phần bìa theo c ? a b c b c b a b c b a a b b a c c c b Hình a b a a a a Hình b + Phần bìa khơng bị tam giác vng che lấp hình vng có cạnh c, diện tích phần bìa khơng bị che lấp : c2 - Đặt bốn tam giác vuông cịn lại lên bìa hình vng thứ hai hình vẽ Phần bìa khơng bị che lấp gồm hai hình vng có cạnh a b u cầu học sinh tính diện tích phần bìa theo a b ? + Diện tích phần bìa khơng bị che lấp : a2 + b2 - Yêu cầu học sinh rút nhận xét quan hệ c2 a2 + b2 + Học sinh rút nhận xét : c2 = a2 + b2 ( Vì chúng phần khơng bị che lấp hai bìa hình vng nhau) 2) Khắc sâu định lí kí hiệu tốn học: * Định lí : “Trong tam giác vng, bình phương cạnh huyền tổng bình phương hai cạnh góc vng” B   A C ABC vng A BC2 = AB2 + AC2 Để khắc sâu định lí kí hiệu tốn học, trước hết cho em biết xác định : cạnh huyền cạnh đối diện với góc vng, cạnh huyền AC góc đối diện góc B, cạnh huyền BC góc đối diện góc A, cạnh huyền AB góc đối diện góc C Hiểu học sinh tóm tắt định lí cách nhanh chóng xác +  ABC vuông A  BC2 = AB2 + AC2 +  ABC vuông B  AC2 = AB2 + BC2 +  ABC vuông C  AB2 = BC2 + AC2 3) Khắc sâu định lí Pytago thơng qua tập: Bài 1: Tìm độ dài x hình vẽ sau: 29 x 12 a) x 21 x b) c) Phân tích: - Ở hình vẽ a b, x đóng vai trị cạnh huyền - Ở hình vẽ c, x đóng vai trị cạnh góc vng Ta cần áp dụng định lí Pytago để tìm x Giải: Áp dụng định lí Pytago vào tam giác vng ta có: a ) x  52  12  25  144  169  x  169  13 b) x  12  22    x c) 29  x  212  x  292  212  841  441  400  x  400  20 Bài 2: Cho tam giác nhọn ABC Kẻ AH vuông góc với BC Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm A 12cm B 20cm C H 5cm Phân tích: Chu vi tam giác ABC = AB + AC + BC  AB2 = AH2 + HB2 ;  BH + HC  AC2 = HC2 + AH2 Giải:  AHB vng H Theo định lý Pytago, ta có: AB2 = AH2 + HB2 = 122 + 52 = 144 + 25 = 169 Do AB = 13 cm  AHC vuông H Theo định lý Pytago ta có: HC2 = AC2 – AH2 = 202 - 122 = 400 – 144 = 256 Do HC = 16 cm Chu vi tam giác ABC AB + AC + BC = 13 + 20 + 21 = 54 cm Bài 3: Tính độ dài cạnh góc vng tam giác vng cân có cạnh huyền bằng: a) 2cm b) cm Phân tích: - Tam giác vng cân tam giác vng có hai cạnh góc vng Do gọi cạnh góc vng a (cm), độ dài cạnh góc vng cịn lại a (cm) Áp dụng định lí Pytago vào tam giác vng ta tính độ dài cạnh góc vng Giải: a) Gọi độ dài cạnh góc vng a (cm), a > Áp dụng định lí Pytago ta có: a2 + a2 = 22 2a2 = a2 =  a= cm b) Gọi độ dài cạnh góc vuông a (cm), a > Áp dụng định lí Pytago ta có: a2 + a2 = 2a2 = a2 =  a = cm Bài 4: Tính đường chéo mặt bàn hình chữ nhật có chiều dài 10dm, chiều rộng 5dm x dm 10 dm Phân tích: Đường chéo mặt bàn hình chữ nhật cạnh huyền tam giác vng có hai cạnh góc vng là: 5dm, 10dm Giải: Gọi độ dài đường chéo mặt bàn hình chữ nhật x (dm), x > Áp dụng định lí Pytago ta có: x  52  102  x  25  100  125  x  125  11,2 dm Bài 5: Cho tam giác ABC vuông A Một đường thẳng cắt hai cạnh AB AC D E Chứng minh: CD  CB  ED  EB B D A C E Phân tích: - Để chứng minh đẳng thức CD  BC  DE  BE (*) ta chứng minh đẳng thức CD  BE  BC  DE (**) sau sử dụng quy tắc chuyển vế - CD, CB, ED, EB cạnh huyền tam giác vuông: ADC, ABC, ADE, ABE - Áp dụng định lí Pytago vào tam giác vng ta đẳng thức, sau cộng vế theo vế hai đẳng thức đẳng thức cho kết thu đẳng thức có vế giống vế đẳng thức (**) Biến đổi vế lại dùng quy tắc chuyển vế ta điều phải chứng minh Giải: Áp dụng định lí Pytago tam giác vuông ADC: CD  AD  AC (1) Áp dụng định lí Pytago tam giác vuông ABE: BE  AE  AB (2) Cộng vế theo vế hai đẳng thức (1) (2) ta được: 10 CD  BE  AD  AE  AB  AC (3) Áp dụng định lí Pytago tam giác vuông: ADE, ABC ta được: AD  AE  DE ; AB  AC  BC (4) Thay (4) vào (3) ta được: CD  BE  BC  DE hay CD  BC  DE  BE 4) Khắc sâu định lí Pytago đảo thơng qua tập * Định lí : “Nếu tam giác có bình phương cạnh tổng bình phương hai cạnh tam giác tam giác vng” * Các tập : Bài 1: Tam giác DEF có: DE = 3cm, EF = 4cm, DF = 5cm Khẳng định sau đúng: A  DEF vuông E B  DEF vuông F C  DEF vuông D D  DEF tam giác vng Phân tích: Vì tam giác vng, cạnh huyền cạnh lớn nên ta so sánh bình phương cạnh lớn với tổng bình phương hai cạnh nhỏ Nếu chúng theo định lí Pytago đảo tam giác tam giác vuông Cụ thể: 52 = 25 32 + 42 = + 16 = 25  32 + 42 = 52 Vì cạnh huyền DF nên tam giác DEF vuông đỉnh đối diện với cạnh huyền, đỉnh E Đáp án: A  DEF vng E 11 Bài 2: Tam giác tam giác vng tam giác có độ dài ba cạnh sau: a) 9cm, 15cm, 12cm b) 5dm, 13dm, 12dm c) 7m, 7m, 10m Phân tích: Tương tự Đáp án: a) 9cm, 15cm, 12cm Vì: 92  122  81  144  225  152 b) 5dm, 13dm, 12dm Vì: 52  122  25  144  169  132 5) Giải toán có nội dung định lí Pytago phương pháp phân tích lên A Bài 1: Trong tam giác ABC cho biết AB = 10cm, BC = 17cm Vẽ BD vng góc với AC D BD = 8cm Tính độ dài cạnh AC D 10c m 8cm C B 17c m Phân tích: AC = AD + DC    BDA: AB  AD  BD ;  BCD: BD2 + DC2 = BC2 Giải: Trong tam giác vng BCD ta có: BD2 + DC2 = BC2 (định lí Pytago)  DC  BC  BD  17  82  289  64  225  DC  15(cm) Tương tự tam giác vng BDA có: 12 AD  AB  BD  102  82  100  64  36  AD  6(cm) Vậy AC = AD + DC = + 15 = 21 (cm) Bài 2: Trên cạnh BC CD hình vng ABCD, lấy điểm E F cho : EC = 2EB FC = FD Chứng minh: ·AEB  ·AEF M E B C Phân tích: ·AEB  ·AEF F   MEA =  FEA A D  MA = AF ;  ME  = EF   MBA =  FDA; MB + BE; EF  EC  CF Giải: Gọi độ dài cạnh hình vuông a a Trên tia đối tia BC lấy điểm M cho BM  Trong tam giác ECF ta có: EC  a ; CF  a Theo định lí Pytago: 2 2  1  5  EF  EC  CF   a    a    a  3  2  6   EF  a 2 13 Ta lại có: ME  MB  BE  a  a  a Do đó: ME = EF (1)  MBA =  FDA (c.g.c) nên MA = AF (2) Từ (1) (2):  MEA =  FEA (c.c.c) Suy ·AEB  ·AEF Bài 3: A B P Cho hình chữ nhật ABCD điểm M M Chứng minh: MA2 + MC2 = MB2 + MD2 D Q Phân tích: MA2  MC  MB  MD Z ^ ^ MA2  MC ; MB  MD ; QC = PB, DQ = PA   MA2  MP  PA2 MC  MQ  QC ; MB  PM  PB MD  MQ  DQ Qua M dựng PQ//BC Giải: Qua M dựng PQ//BC Từ tam giác vuông ta suy : MA2  MP  PA2 MC  MQ  QC Do : MA2  MC  MP  PA2  MQ  QC Tương tự : MB  MD  PM  PB  MQ  DQ2 Nhưng QC = PB, DQ = PA nên MA2  MC  MB  MD 2.3 Kết 14 C Tôi dùng phương pháp thực lớp 7A, trường PTCS Ngọc Vừng, với hướng dẫn em hứng thú học tập tiếp thu tốt Những em học sinh yếu tiến rõ rệt Đồng thời, sử dụng phương pháp hình thành cho em phương pháp giải số tốn có sử dụng định lí Pytago, em làm tốt dạng toán lớp lên lớp 8, lớp 9, lớp em ghi nhớ định lí Pytago giải tập liên quan đến định lí cách dễ dàng Trên vài ví dụ thể phần phương pháp dạy học đổi để học sinh lớp nắm kiến thức định lí Pytago Nó giúp học sinh cách tính độ dài cạnh tam giác vng, chứng minh tam giác vng , sở cầu nối trình tiếp thu kiến thức hình học 8, Học sinh tơi tiếp thu tốt kiến thức nói cách nhẹ nhàng, hiệu quả, khắc sâu kiến thức Học sinh cảm thấy thích thú tới hình, có hứng thú học tập, giải nội dung học nhanh chóng, đạt kết cao Khi gặp tốn dạng học sinh khơng lúng túng mà trái lại thoải mái, làm cách tự nhiên, nhẹ nhàng kết phần hình học chất lượng tăng lên Thông qua kết kiểm tra phần liên quan đến định lí Pytago tơi hồn tồn khẳng định điều đó: Bài ktra Tsố Giỏi TS Bài số 17 Bài số 17 Khá % TS % Tbình Yếu TS TS % Kém % TS % Tăng Giảm Như vậy, sau áp dụng số biện pháp “ Hướng dẫn học sinh vận dụng định lí Pytago vào giải tập hình học 7” cho đối tượng HS lớp giảng dạy, tơi thấy kết kiểm tra có thay đổi, số đạt điểm khá, giỏi tăng đồng thời số yếu, giảm 2.4 Bài học kinh nghiệm Phân môn hình học học lớp với nội dung học tương đối đơn giản song làm để phát huy tính tư tích cực, sáng tạo cho học sinh vấn đề khơng đơn giản Để đạt điều địi hỏi người giáo viên nắm vững tri thức tương ứng mà phải nắm kỹ kỹ xảo, 15 kỹ truyền thụ tri thức Giáo viên phải biết kích thích ý học sinh, phát huy tính tự lập tích cực sáng tạo học sinh Hệ thống hố tài liệu, đối chiếu, nghiên cứu thêm nhiều tài liệu có liên quan để chọn lọc kiến thức bản, trọng tâm, làm tư liệu mới, xác nhất, học hỏi thêm kinh nghiệm người trước để làm kinh nghiệm cho thân Trên bước đầu tự mày mò nghiên cứu thử nghiệm, chắn cịn thiếu sót số hạn chế định, cần phải rút kinh nghiệm bổ sung dần để giúp đỡ học sinh ngày nắm vững kiến thức cách sâu sát toàn diện Kỹ nhận biết nhanh, kiến thức áp dụng Để làm tốt biện pháp việc rèn luyện kỹ cho học sinh theo ý chủ quan tôi, cần ý quan điểm sau: - Giáo dục ý thức ham học tập cho học sinh từ đầu ấn tượng quan trọng - Yêu cầu bắt buộc học sinh phải học thuộc lòng bảng nhân chia, rèn kỹ tính nhẩm nhanh - Trên sở nội dung chương trình tốn lớp bậc tiểu học, giáo viên phải hệ thống hoá kiến thức kỹ tính tốn, tính nhẩm, chủ yếu cộng, nhân, chia có biện pháp lồng ghép phù hợp với giảng dạy, ôn, luyện tập học cụ thể - Hướng dẫn phương pháp học tập đặc trưng cho học sinh giúp em tốn thời gian mà thuộc mau, nhớ lâu, vận dụng tốt - Phải tạo tình có vấn đề buộc em phải tự tìm cách tháo gỡ có phát triển lực tư sáng tạo học sinh - Rèn cho học sinh kỹ vẽ hình, ghi giả thiết, kết luận phân tích điều kiện tập để nhìn thấy chung, trừu tượng riêng, phát triển khả khái quát Trên số kinh nghiệm thân rút từ thực tế giảng dạy Với cố gắng thân song khơng thể tránh khỏi thiếu sót Rất mong góp ý đồng nghiệp, để thân ngày tiến III PHẦN KẾT LUẬN, KIẾN NGHỊ Kết luận 16 Để chọn tập có ứng dụng định lí Pytago u cầu người thầy cần đầu tư thời gian để đọc tham khảo tài liệu liên quan, qua chọn lọc dạng tập, kiến thức nâng cao phù với đối tượng học sinh lớp dạy, thông qua giảng lớp giáo viên cung cấp cho học sinh để củng cố khắc sâu cho em tập vận dụng định lí, từ nâng cao chất lượng học tập em Để có chất lượng học tập tốt học sinh ngồi việc giáo viên phải có phương pháp tốt, biết sáng tạo, chịu khó học hỏi đồng nghiệp, khơng ngừng trau dồi chuyên môn nghiệp vụ, tâm huyết với nghề nghiệp mà cịn phải kỳ cơng với giảng Đặc biệt thời đại đẩy mạnh ứng dụng công nghệ thông tin nay, thầy cô giáo phải không ngừng tự nâng cao kiến thức tin học, thường xuyên cập nhật thông tin, tài liệu hay để phuc vụ cho giảng dạy Với lượng kiến thức lĩnh hội ngày tăng lên khó thêm, học sinh gặp khó khăn để ghi nhớ kiến thức đồ sộ tất mơn học đầu Vì thế, cần thầy cô truyền đạt kiến thức tới học sinh cách dễ hiểu, dễ ghi nhớ nhớ lâu Từ tơi thấy cần phải học hỏi nhiều nữa, nghiên cứu nhiều loại sách để bổ trợ cho mơn tốn Giúp thân ngày vững vàng kiến thức phương pháp giảng dạy, giúp cho học sinh u thích mơn tốn, khơng cịn coi mơn tốn mơn học khơ khan khó Đồng thời khơng với định lí Pytago, với mơn hình học 7, mà tơi cần tiếp cận với mảng kiến thức khác mơn tốn để giảng dạy kiến thức truyền đạt tới em khơng cịn cứng nhắc áp đặt Trên số kinh nghiệm mà thân tơi rút từ q trình giảng dạy học hỏi đồng nghiệp , chắn viết nhiều điều chưa chọn lọc thiếu sót, mong góp ý hội đồng khoa học cấp trường – cấp phòng để làm kinh nghiệm cho thân Tôi xin chân thành cảm ơn! Kiến nghị Nếu có điều kiện tơi nghiên cứu tiếp đề tài năm sau nhằm ngày hoàn thiện phương pháp giảng dạy thân nhằm góp phần nâng cao chất lượng mơn tốn nói chung Để làm việc đó, tơi cần động viên, hỗ trợ quan tâm Ban Giám Hiệu nhà trường cấp 17 Nếu có điều kiện Phịng Giáo Dục nên tổ chức hội thảo chuyên đề, có chuyên đề rèn kỹ vận dụng định lí Pytago vào giải tập hình học Ngồi cịn nên mở lớp bồi dưỡng giáo viên ôn đội tuyển học sinh giỏi lớp Trên phần trình bày kinh nghiệm giảng dạy “ Hướng dẫn học sinh vận dụng định lí Pytago vào giải tập hình học 7” mà tơi áp dụng hướng dẫn học sinh năm học có mang lại kết khả quan Tuy nhiên chắn giải pháp khác để học sinh học tốt mà thân cần phải học hỏi Nhưng thời gian khả nhiều hạn chế nên mong đóng góp ý kiến quý đồng nghiệp để đề tài đạt hiệu tương lai Vân Đồn, ngày tháng năm 2018 Người viết SKKN Lưu Tuấn Duy 18 IV TÀI LIỆU THAM KHẢO- PHỤ LỤC Sách giáo khoa, sách tập Toán tập Nhà xuất Giáo dục Sách giáo viên Toán tập Nhà xuất Giáo dục Ôn tập kiểm tra Toán Nhà xuất Đà Nẵng Bồi dưỡng Toán lớp (tập 1) Nhà xuất Giáo dục Toán nâng cao chuyên đề hình học Nhà xuất giáo dục PHỤ LỤC I MỞ ĐẦU 1- Lý chọn đề tài trang 2- Mục đích nghiên cứu trang 3- Thời gian, địa điểm .trang 4- Đóng góp mặt thực tiễn trang II NỘI DUNG Chương 1: Tổng quan trang 1.1 Cơ sở lí luận trang 1.2 Cơ sở thực tiễn trang Chương 2: Nội dung vấn đề nghiên cứu trang 2.1 Thực trạng trang 2.2 Các giải pháp trang 2.3 Kết trang 17 2.4 Bài học kinh nghiệm trang 18 III KẾT LUẬN, KIẾN NGHỊ Kết luận .trang 20 Kiến nghị .trang 21 Tài liệu tham khảo trang 22 19 V NHẬN XÉT CỦA HỘI ĐỒNG CHẤM SÁNG KIẾN KINH NGHIỆM *) Nhận xét hội đồng thi đua cấp trường Vân Đồn, ngày tháng năm 2018 NHẬN XÉT CỦA HỘI ĐỒNG CHỦ TỊCH HỘI ĐỒNG HIỆU TRƯỞNG 20 ... dạy học theo chuẩn kiến thức kỹ Vì gọi chuẩn – cần phải nắm vững Rèn kỹ vận dụng định lí Pytago chuẩn mà học sinh cần phải nắm Hệ thống tập thể dạng toán vận dụng định lí Pytago có vai trị quan... em phương pháp giải số tốn có sử dụng định lí Pytago, em làm tốt dạng tốn lớp lên lớp 8, lớp 9, lớp em ln ghi nhớ định lí Pytago giải tập liên quan đến định lí cách dễ dàng Trên vài ví dụ thể phần... luận Chương có định lý cơng nhận (định lý Pytago) định lý có chứng minh Chương hầu hết định lý chứng minh hướng dẫn chứng minh Trừ định lý đồng quy đường trung tuyến đường cao SKG toán trọng xây

Ngày đăng: 29/09/2022, 07:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w