Slide 1 VIETNAM NATIONAL UNIVERSITY HO CHI MINH UNIVERSITY OF SCIENCE FACULITY OF ELECTRONICS AND TELECOMMUNICATION GRADUATE COURSE IN MICROELECTRONICS Design an 2 stage amplifier Le Thanh Thien An 1.
VIETNAM NATIONAL UNIVERSITY - HO CHI MINH UNIVERSITY OF SCIENCE FACULITY OF ELECTRONICS AND TELECOMMUNICATION GRADUATE COURSE IN MICROELECTRONICS Design an stage amplifier Le Thanh Thien An Agenda Outline Result review Hand design result Simulation summary result Layout review Outline Base on topology as below image and specification information, design an amplifier Topology Specification Specification Item Condition Specification Unit MIN TYP MAX Supply Voltage V 4.5 5.5 Temperature °C -40 25 150 Input voltage range V 1.5 2.5 Current (Icc) uA - - 800 Slew rate (SR) MV/s - - Open Gain dB 60 - - Unity Gain Frequency MHz - - Phase Margin deg 50 - - mV -10 - 10 mV - - - mV - - - um^2 - - 3600 Input offset voltage (3s + systematic) Saturation region |Vds - Vdsat|, Strong inversion region |Vgs-Vth|,min Area (total W*L) Result review Below result is from hand-calculation Amplifier has met all specifications Cout = 10 pF Specification hand-calculation simulation simulation (Post_layout) Item Condition Specification Judge Unit MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX Supply Voltage V 4.5 5.5 4.5 5.5 4.5 5.5 4.5 5.5 Temperature °C -40 25 150 -40 25 150 -40 25 150 -40 25 150 Input voltage range V 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 Current (Icc) uA - - 800 248.67 355.25 532.87 245 379 602 244.6 378.6 600.6 Slew rate (SR) MV/s - - 7.36 10.51 15.77 5.12 8.43 15.9 5.04 8.32 15.63 Open Gain dB 60 - - 96.22 100.03 105.87 74.57 84.12 88.38 74.59 84.12 88.39 Unity Gain Frequency MHz - - 6.02 7.2 8.82 2.98 6.22 14.7 2.978 6.21 14.71 Phase Margin deg 50 - - - 72.8 - 51.29 67.29 72.12 51.27 67.29 72.11 mV -10 - 10 - 9.89 - -9.85 -0.05 9.67 -9.87 -0.05 9.81 Input offset voltage (3s + systematic) Saturation region |Vds - Vdsat|, Strong inversion region |Vgs-Vth|,min - - OK OK OK OK OK OK mV - - - 100 - - 290 - - 289 - OK mV - - - 150 - - 125 - - 125 - - um^2 - - 3600 - 2269 - - 2276 - - 3293 - OK Area (total W*L) OK Hand design result (1/2) Items unit Mpin0/Mpin1 Mnl0/Mnl1 Mno Mpr Mpt1 L (um) 3 1 W (total W) (um) 27.33 5.9 212.24 7.47 7.47 134.39 finger/multi 2/2 2/2 2/72 2/2 2/2 2/36 J (uA/um) 0.33 1.51 1.51 2.38 2.38 2.38 Vdsat (V) 0.24 0.37 0.37 0.4 0.4 0.4 Vds - Vdsat (V) 1.17 0.66 1.5 0.56 0.56 0.56 Area (um^2) 109.33 35.37 636.71 7.47 7.47 134.34 Cc(pF) Iref(A) 1.69 17.76 1300 (um2) 6.40E-05 (A/(V^2)) 2.41E-05 (A/(V^2)) 9.92 (mv) Cc (pF) R0(kohm) Area of Capacitor Cc (0.0013pF/um2) unCox = upCox = Input offset voltage 3σ Simulation results Mpt2 Hand design result (2/2) Step 1: Hand design and simulation Below image shows the schematic with parameters of components Simulation result summary Consideration (1) ICC Contribution Analysis from DC simulation Current (ICC) [uA] Res [kohm] Vth_MPR Vdsat_MPR I_MPR I_MPT1 I_MPT2 Typ 379 2.28E+02 7.45E-01 3.53E-01 1.71E+01 1.80E+01 3.44E+02 Worst 602 1.70E+02 5.23E-01 5.04E-01 2.63E+01 2.90E+01 5.47E+02 Typ temp = 25 deg VCCA=5V Vcm=1.5 mos_hv=TT Moscap=TT Res=TT Worst temp = 150 deg VCCA = 5.5V Vcm=1 mos_hv=FF Moscap=Max Res= FF Because of channel length effect, current ratio between stage and does not same with hand design VCCA max, Vcm make Vds of MPT1 become bigger Mos_hv = FF: Vth of mosfet is smaller Temp higher => Vth decrease R value is smaller, => current is higher Res = FF: fast conductance => current higher Consideration (2) slew rate Contribution anaysis from DC simulation Slew rate [Mv/s] Typ Cc Res I_MPR I_MPT1 I_MPT2 [pF] [kohm] [uA] [uA] [uA] Typ 8.43 1.57 2.28E+02 17.1 18.4 350 Worst 5.04 1.99 2.48E+02 11.7 12.3 237 : temp=2 5deg VCCA=5V Vcm=1.5V mos hv=TT MosCap=TT Res=TT Worst : Temp=-4 VCCA=4.5 mos _hv=FS Moscap=MAX Res=SS Cc is biggest contributor for PVT variation of slew rate VCCA => current decrease Temp is lower, so R value increase => current decrease Res = SS: lower conduction => current decrease Moscap = max => Cc increase => SR decrease Consideration (2) Slew rate (2/2) Contribution anaysis from DC simulation Slew rate [Mv/s] Typ Res I_MPR I_MPT1 I_MPT2 [kohm] [uA] [uA] [uA] Typ 8.43 1.57 2.28E+02 17.1 18.4 350 Worst 5.04 1.99 2.48E+02 11.7 12.3 237 : temp=2 5deg VCCA=5V Vcm=1.5V mos hv=TT MosCap=TT Res=TT Worst : Temp=-4 VCCA=4.5 mos _hv=FS Moscap=MAX Res=SS Cc [pF] Consideration (3) Open gain Contribution Analysis from DC simulation Open Gain gm [dB] _MPIN1 gm [uA/V] Typ Worst Typ ro _MN0 ro1 _MPIN1 [uA/V] [Mohm] [Mohm] ro [kohm] [Mohm] ro ro _MN0 _MPT2 [kohm] [kohm] I_MPT2 I_MPT2 [uA] [uA] 84.12 79.5 1810 2.16 5.9 3.41 51.87 123 89.7 18 344 74.57 85.6 1820 1.18 3.06 1.93 59.76 521 67.5 29 547 : temp=2 5deg VCCA=5V Vcm=1.5V mos_hv=TT Moscap=TT Res=TT Worst : temp=1 50 VCCA=5.5 Vcm=1 mos_hv=FF Moscap=MAX Res=FF 10 ro2 _MNL1 VCM decrease so Vds of MPT1, MPT2 increase, ro decrease To improve open gain, need to decrease current to get ro higher Vth of Pmos and Nmos decrease: increase current, ro decrease Res = FF: fast conducton, increase current Temp increase, vth decrease: increase current Consideration (4) Unity Gain Frequency Contribution Analysis from DC simulation Unity Gain Typ Worst Typ: Frequency Cc [MHz] [pF] gm _MPIN [uA/V] [uA] gm fu fp2 _MN (calc) (calc) [uA/V] [MHz] [MHz] 6.22 1.87 79.5 18 1810 6.77 24.27 2.98 2.27 45.7 12.1 1070 3.2 13.88 temp=2 5deg VCCA=5V Vcm=1.5 mos_hv=TT Moscap=TT Res=TT Worst: temp=1 50 VCCA=4.5 Vcm=2.5 mos_hv=ss Moscap=MAX Res=SS 11 I_MPT1 fu in my hand design is 7.2M => cause: Cc value is change Moscap = max => fu is creased Gm1 decrease by current decrease Res = SS => decrease current => gm1 decrease Vds of MPT1, MPT2 is decreased Consideration (5) Phase Margin (1/2) Contribution Analysis from DC simulation fu fz Phase Margin (calc) (calc) (calc) Cc gm_MPIN1 gm_MN0 I_MPT1 [deg] [MHz] [MHz] [MHz] [pF] [uA/V] [uA/V] [uA] I_MPT2 [uA] Typ 67.29 6.77 24.27 154.05 1.87 79.5 1810 18 344 Worst 51.29 19.39 38.95 431.14 0.993 121 2690 27.6 524 Typ Worst 12 fp2 temp=25deg VCCA=5V Vcm=1 mos_hv=TT moscap=TT Res=TT tem=-40 VCCA=5.5 Vcm=1 mos_hv=SF moscap=Min Res=FF Simulation result does not match with hand design It’s decreased by fz Res=FF => increase current Moscap=min : Cc decrease => PM decrease Mos_hv=SF: Vth of NMOS increase => current I2 decrease Vth of Pmos decrease => current I1 increase => PM decrease VCCA= 5.5 and Vcm =1 => Vds of MPT1 increase , so current increase The error factor: Cc, gm_PIN1, gm_MN0 Consideration (5) Phase Margin (2/2) Contribution Analysis from DC simulation fu 13 fp2 fz Phase Margin (calc) (calc) (calc) Cc gm_MPIN1 gm_MN0 I_MPT1 [deg] [MHz] [MHz] [MHz] [pF] [uA/V] [uA/V] [uA] I_MPT2 [uA] Typ 67.29 6.77 24.27 154.05 1.87 79.5 1810 18 344 Worst 51.29 19.39 38.95 431.14 0.993 121 2690 27.6 524 Typ temp=25deg VCCA=5V Vcm=1 mos_hv=TT moscap=TT Res=TT Worst tem=-40 VCCA=5.5 Vcm=1 mos_hv=SF moscap=Min Res=FF Consideration (6) Offset Voltage: Random Contribution Analysis from DC simulation Random offset σVth_diff σVth_load gm_MPIN1 gm_MNL1 (Ratio) voltage [mv] [mv] [mv] [uA/V] [uA/V] gm_MNL1/gm_MPIN1 [uA/V] 1.83 2.81 79.5 48.5 0.61 Typ Typ 9.69 Temp=25deg VCCA=5V Vcm=1.5V mos_hv=TT moscap=TT Res=TT Main contributor for random offset voltage is load pair To reduce offset voltage: - 14 Increase gate length of load pair Decrease current Increase delta OV of Nmod (load) a little Consideration (7) Offset voltage: Systematic Contribution Analysis from DC simulation Systematic offset voltage Delta Vgs* [mv] Av1 [mv] gm_MPIN1 [V/V] ro1 [uA/V] [Mohm] ro ro MPIN1 MNL1 [Mohm] [Mohm] Typ 0.05 8.63 171 79.5 2.16 5.9 3.41 Worst 0.15 17.19 109.9 72.4 1.52 3.39 2.75 Typ temp=25deg VCCA=5V Vcm=1.5V mos_hv=TT Moscap=TT Res=TT Worst temp=150deg VCCA=5.5V Vcm=1 mos_hv=SS Moscap=MAX RES=TT Delta Vgs* = Vgs_MN0 - Vgs_MNL0 Mismatch characteristic of load pair and output mosfet (Vgs between them) cause of systematic offset voltage To reduce systematic offset voltage: - 15 Reduce mismatch current between MPT1 and MPT2 Av1 (gain of stage 1) is enough large (Vof = Delta_Vo1/AV1) Layout Circuit schematic for layout 16 Floor-plan 45.8 um Diff , load pair are placed common centroid Antenna diodies are placed close to gate with mosfets Symmetrical placement for current source mosfets R & Dummy R MPT2 Output MPR DM MPT1 DM Mos 71,8 um DM MPIN1 MPIN0 DM Cc DM MPIN0 MPIN1 DM Antenna diodes DM : Dummy 17 DM DM MNL0 MNL1 MNL1 MNL0 DM DM Important nets VPT1: Tail signal is short and route straight due to center line of differential pair OUT: short and width correspond with current ratio 18 Important nets 19 VNL0-VNL1: routing common centroid , using some dummy metal OUT: increase wiring width for long nets THANK FOR YOUR ATTENTION ... Mpt1 L (um) 3 1 W (total W) (um) 27 .33 5.9 21 2 .24 7.47 7.47 134.39 finger/multi 2/ 2 2/ 2 2/ 72 2 /2 2 /2 2/36 J (uA/um) 0.33 1.51 1.51 2. 38 2. 38 2. 38 Vdsat (V) 0 .24 0.37 0.37 0.4 0.4 0.4 Vds - Vdsat... Temperature °C -40 25 150 -40 25 150 -40 25 150 -40 25 150 Input voltage range V 1.5 2. 5 1.5 2. 5 1.5 2. 5 1.5 2. 5 Current (Icc) uA - - 800 24 8.67 355 .25 5 32. 87 24 5 379 6 02 244.6 378.6 600.6 Slew... 10.51 15.77 5. 12 8.43 15.9 5.04 8. 32 15.63 Open Gain dB 60 - - 96 .22 100.03 105.87 74.57 84. 12 88.38 74.59 84. 12 88.39 Unity Gain Frequency MHz - - 6. 02 7 .2 8. 82 2.98 6 .22 14.7 2. 978 6 .21 14.71 Phase