1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ

59 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phân Tích Ứng Xử Của Dầm Composite Sử Dụng Lý Thuyết Đàn Hồi Phi Cục Bộ
Trường học Standard Format University
Chuyên ngành Engineering
Thể loại Thesis
Năm xuất bản 2023
Thành phố Hanoi
Định dạng
Số trang 59
Dung lượng 645,57 KB

Nội dung

TÓM TẮT Trong luận văn ứng xử cuả dầm composite chức phân tích dựa lý thuyết biến dạng cắt bậc cao dạng quasi-3D lý thuyết đàn hồi phi cục Eringer Phương trình động lực học dầm thiết lập dựa nguyên lý Hamilton, sử dụng lời giải Navier nhằm giải phương trình đặc trưng cho ba tốn: tốn dầm chịu uốn, toán ổn định toán dao động tự chịu tải trọng nhiệt độ ẩm Dùng phương pháp Ritz nguyên lý Hamilton để giải toán dao động tự với điều kiện biên khác có xét đến ảnh hưởng hiệu ứng tỉ lệ kích thước vật liệu Mỗi tốn thực hai trường hợp có khơng có biến dạng pháp tuyến so sánh với kết tác giả khác v ABSTRACT Static, buckling and free vibration analysis of functionally graded nanobeams under hygro-thermo-mechanical loads are presented in this thesis It is based on a quasi-3D shear deformation theory and nonlocal elasticity theory Equations of motion are derived from Hamilton's principle and Navier solution is used to analyse static, buckling and vibration responses of simply supported functionally graded nanobeams Moreover, Ritz method and Hamilton's equations are also investigate for vibration analysis of functionally graded with different boundary conditions The material properties are temperature dependent with respect to the uniform, linear and nonlinear variation Numerical results are compared with those obtained from previous works and to investigate effects of the material parameter, side-to-thickness ratio, scale parameter, temperation and moisgure variation on the deflection, natural frequencies and critical buckling loads vi MỤC LỤC Trang tựa Trang QUYẾT ĐỊNH GIAO ĐỀ TÀI LÝ LỊCH KHOA HỌC i LỜI CAM ĐOAN iii LỜI CẢM ƠN iv TÓM TẮT v ABSTRACT .vi MỤC LỤC vii DANH SÁCH CÁC BẢNG ix DANH SÁCH CÁC HÌNH .xi DANH SÁCH CÁC KÝ HIỆU xii Chương 1: TỔNG QUAN 1.1 Đặt vấn đề 1.2 Tổng quan tình hình nghiên cứu 1.3 Mục tiêu đề tài 1.4 Phương pháp nghiên cứu 1.5 Tính đề tài 1.6 Nội dung nghiên cứu Chương 2: CƠ SỞ LÝ THUYẾT 2.1 Giới thiệu 2.2 Cơ sở lý thuyết 2.2.1 Các đặc tính vật liệu dầm FGM 2.2.2 Sự phân bố nhiệt độ độ ẩm 2.2.3 Lý thuyết dầm biến dạng cắt bậc cao lý thuyết đàn hồi phi cục 10 2.2.3.1 Lý thuyết dầm biến dạng cắt bậc cao 10 2.2.3.2 Lý thuyết đàn hồi phi cục 13 2.2.4 Lời giải Navier 14 2.3.5 Lời giải Ritz 16 vii 2.4 Các hàm dạng điều kiện biên 18 Chương 3: VÍ DỤ SỐ 19 3.1 Tổng quát 19 3.2 Bài tốn : Tính tốn tần số dao động dầm FGM 21 3.3 Bài tốn : Tính tốn lực ổn định tới hạn dầm FGM 25 3.4 Bài tốn 3: Tính tốn độ võng dầm FGM 27 3.5 Bài tốn : Tính tốn tần số dao động dầm FGM chịu tải phân bố tác động nhiệt độ ẩm sử dụng lời giải Navier 29 3.6 Bài tốn : Tính tốn tần số dao động dầm FGM tác động nhiệt độ ẩm tuyến tính 31 3.7 Bài tốn : Tính tốn tần số dao động dầm FGM tác động nhiệt độ ẩm phi tuyến 32 3.8 Bài toán 7: Tính tốn lực ổn định tới hạn dầm FGM chịu tải phân bố tác động nhiệt độ ẩm sử dụng lời giải Ritz 34 3.9 Bài toán 8: Sử dụng lời giải giải tích tính tốn tần số dao động dầm FGM với điều kiện biên H-S 35 3.10 Bài toán 9: Sử dụng lời giải giải tích tính tốn tần số dao động dầm FGM với điều kiện biên C-C 38 Chương KẾT LUẬN - KIẾN NGHỊ 40 4.1 Kết luận 40 4.2 Kiến nghị 40 TÀI LIỆU THAM KHẢO 41 PHỤ LỤC 42 viii DANH SÁCH BẢNG BIỂU Bảng Trang Bảng 2.1: Các điều kiện biên 18 Bảng 3.1:Thông số dầm FGM 20 Bảng 3.2: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dao động dầm FGM L / h =100 21 Bảng 3.3: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dao động dầm FGM L/h=20 22 Bảng 3.4: Ảnh hưởng hệ số  , tham số p đến lực ổn định tới hạn dầm FGM Tỉ lệ L/h=100 24 Bảng 3.5: Ảnh hưởng hệ số  , tham số p đến lực ổn định tới hạn dầm FGM Tỉ lệ L/h=5 24 Bảng 3.6: Ảnh hưởng hệ số  , tham số p đến độ võng cực đại dầm FGM Tỉ lệ L/h=100 28 Bảng 3.7: Tần số dao động dầm FGM chịu tải phân bố tác động nhiệt độ ẩm L/h=20 30 Bảng 3.8: Tần số dao động dầm FGM tác động nhiệt độ ẩm tuyến tính L/h=20 32 Bảng 3.9: Tần số dao động dầm FGM tác động nhiệt độ ẩm phi tuyến L/h=20 32 Bảng 3.10: Lực ổn định tới hạn dầm FGM chịu tải phân bố tác động nhiệt độ ẩm L/h=20 34 Bảng 3.11: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dao động dầm FGM L / h  100 35 Bảng 3.12: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM L / h  20 37 ix Bảng 3.13: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM với phía Al2O3, Metal L / h  20 38 Bảng 3.14: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM với phía Al2O3, SUS304 L / h  20 38 x DANH SÁCH CÁC HÌNH Hình Trang Hình 1.1: Phân loại vật liệu composite Hình 1.2: Dầm composite chức Hình 1.3: Một số hình ảnh ứng dụng vật liệu FGM tự nhiên Hình 2.1: Kích thước hình học dầm chức Hình 3.1: Ảnh hưởng tham số p , hệ số  lên tần số dao động mode có tính đến biến dạng cắt L/h=100 24 Hình 3.2: Ảnh hưởng hệ số  , lên mode dao động có tính đến biến dạng cắt L/h=100 25 Hình 3.3: Ảnh hưởng hệ số  , tham số p lên số dao động hai trường hợp có khơng có bến dạng cắt L/h=100 25 Hình 3.4: Ảnh hưởng hệ số  , tham số p lên lực ổn định tới hạn có tính đến biến dạng cắt 28 Hình 3.5: Ảnh hưởng hệ số  , tham số p lên độ võng cực đại có tính đến biến dạng cắt 30 Hình 3.6: Ảnh hưởng tham số p , nhiệt độ độ ẩm lên tần số dao động   1, T  20 có kể đến biến dạng cắt 31 Hình 3.7: Ảnh hưởng nhiệt độ độ ẩm lên tần số dao động   1, p  có kể đến biến dạng cắt 32 Hình 3.8: Ảnh hưởng tham số p , nhiệt độ lên tần số dao động chịu tải phân bố đều, tuyến tính, phi tuyến có xét đến biến dạng pháp tuyến 34 Hình 3.9: Ảnh hưởng tham số p , nhiệt độ độ ẩm lên lực ổn định tới hạn L / h  20,   36 xi DANH SÁCH KÝ HIỆU  x ,  z ,  xz Biến dạng dài, biến dạng pháp tuyến, biến dạng trượt Ec , c , c Mô đun Young, khối lượng riêng, hệ số Poison vật liệu gốm Em ,  m , m Mô đun Young, khối lượng riêng, hệ số Poison vật liệu kim loại Pc , Pm Đặc trưng hữu hiệu vật liệu gốm kim loại Vc ,Vm Mật độ thể tích vật liệu gốm kim loại c , m Hệ số mở rộng độ ẩm vật liệu gốm kim loại  c , m Hệ số mở rộng nhiệt độ vật liệu gốm kim loại H , H1 , H , H hệ số phụ thuộc nhiệt độ p Tham số vật liệu T0 , C0 nhiệt độ độ ẩm tham chiếu Tc , Tm , Cc , Cm nhiệt độ độ ẩm lớp trên, dầm u , w, Chuyển vị dọc, ngang góc xoay cuả dầm  x ,  z , xz Ứng suất pháp tuyến ứng suất tiếp 1  2 0  0 ,  xz x ,x z Độ cong dầm Biến dạng pháp tuyến, biến dạng trượt Qij Độ cứng vật liệu Cij Độ cứng vật liệu U ,V , K Năng lượng biến dạng, công thực động h, L , b Chiều dày , chiều dài, chiều rộng dầm  toán tử Laplacian tij ứng suất toàn cục ,  Tần số dao động N cr , N cr Lực ổn định tới hạn  ,  max Độ võng cực đại xii  Tham số phi cục K ij ,M ij Ma trận độ cứng ma trận khối lượng FGM Vật liệu composite chức (Functionally Graded Material - FGM) EBT Lý thuyết dầm Euler-Bernoulli TBT Lý thuyết dầm Timoshenko HBT Lý thuyết biến dạng cắt bậc cao UTR Nhiệt độ độ ẩm phân bố LTR Nhiệt độ độ ẩm tuyến tính NLTR Nhiệt độ độ ẩm phi tuyến xiii Chương TỔNG QUAN 1.1 Đặt vấn đề Vật liệu composite loại vật liệu hỗn hợp hình thành từ hai hay nhiều loại vật liệu khác nhau, tùy theo cách kết hợp vật liệu (matrix) vật liệu gia cường (reinforcement) dạng hạt sợi mà hình thành nên cấu trúc khác Do tính ưu việt vật liệu thành phần nên loại vật liệu có nhiều ưu điểm so với loại vật liệu truyền thống, ứng dụng hiệu nhiều lĩnh vực kỹ thuật khác hàng khơng, khí, hàng hải, y khoa, xây dựng,… Hình 1.1: Phân loại vật liệu composite [43] Hình 1.2: Dầm composite chức [41] Đối với kết cấu composite nhiều lớp, thay đổi đột ngột đặc tính thành phần vật liệu lớp vật liệu nên gây tượng tập trung ứng suất lớn vị trí Sự tập trung ứng suất giảm thiểu đáng kể   m Mode 3 Tham số vật liệu p 2 Tham khảo 0.5 10 Nghiên cứu  z  9.8680 7.7451 6.9952 6.4224 5.9420 5.6759 Nghiên cứu  z  9.8681 7.7544 7.0104 6.4391 5.9522 5.6809 Eltaher cộng [8] 9.8700 7.7981 7.0833 6.5182 5.9970 5.7005 Nghiên cứu  z  39.4526 30.9653 27.9669 25.6764 23.7551 22.6914 Nghiên cứu  z  39.4545 31.0033 28.0286 25.7438 23.7964 22.7120 Eltaher cộng [8] 39.4849 30.9909 27.9902 25.6984 23.7762 22.7115 Nghiên cứu  z  88.6961 69.6153 62.8733 57.7217 53.4000 51.0092 Nghiên cứu  z  88.7054 69.7046 63.0153 57.8763 53.4956 51.0579 Eltaher cộng [8] 88.8594 69.7968 63.0799 57.9299 53.5616 51.1345 Nghiên cứu  z  9.4143 7.3891 6.6736 6.1272 5.6689 5.4150 Nghiên cứu  z  9.4145 7.3979 6.6881 6.1431 5.6786 5.4198 Eltaher cộng [8] 9.4162 7.4396 6.7577 6.2185 5.7212 5.4384 Nghiên cứu  z  33.4069 26.2194 23.6805 21.7410 20.1142 19.2135 Nghiên cứu  z  33.4074 26.2516 23.7327 21.7981 20.1492 19.2310 Eltaher cộng [8] 33.4301 26.2385 23.6981 21.7578 20.1304 19.2289 Nghiên cứu  z  64.5463 50.6609 45.7546 42.0057 38.8607 37.1208 Nghiên cứu  z  64.5533 50.7259 45.8579 42.1181 38.9302 37.1563 Eltaher cộng [8] 64.6429 50.7749 45.8891 42.1432 38.9656 37.1998 Nghiên cứu  z  9.0179 7.0780 6.3927 5.8692 5.4302 5.1870 Nghiên cứu  z  9.0181 7.0864 6.4066 5.8845 5.4395 5.1916 Eltaher cộng [8] 9.0197 7.1263 6.4731 5.9567 5.4803 5.2094 Nghiên cứu  z  29.4899 23.1474 20.9059 19.1937 17.7575 16.9624 Nghiên cứu  z  29.4932 23.1758 20.9521 19.2442 17.7884 16.9778 Eltaher cộng [8] 29.5117 23.1631 20.9205 19.2076 17.7710 16.9751 Nghiên cứu  z  53.2299 41.7786 37.7324 34.6408 32.0472 30.6124 36 Nghiên cứu  z  53.2352 41.8322 37.8177 34.7336 32.1046 30.6417 Eltaher cộng [8] 53.3024 41.8672 37.8387 34.7501 32.1301 30.6739 Bảng 3.12: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM L / h  20 Dầm FGM với phía Al2O3, SUS304, khơng ảnh hưởng đến nhiệt độ độ ẩm Thông số cho Bảng 3.1   m  Tham khảo Tham số vật liệu p 0.2 Nghiên cứu  z  9.8680 8.6925 7.0704 6.0546 Nghiên cứu  z  9.8681 8.6955 7.0836 6.0630 Ebrahimi cộng [14] 9.8594 8.6845 7.0638 6.0496 Nghiên cứu  z  9.4143 8.2929 6.7454 5.7763 Nghiên cứu  z  9.4145 8.2957 6.7580 5.7842 Ebrahimi cộng [14] 9.4062 8.2853 6.7390 5.7715 Nghiên cứu  z  9.0179 7.9438 6.4614 5.5331 Nghiên cứu  z  9.0181 7.9465 6.4735 5.5407 Ebrahimi cộng [14] 9.0102 7.9365 6.4553 5.5286 Nhận xét: - Tần số dao động giải lời giải giải tích có kết giống lời giải Navier - Khi tăng tham số vật liệu tăng hệ số phi cục tần số dao động giảm dần mode dao động Tần số dao động tăng dần tăng mode dao động - Tần số dao động có xét đến biến dạng cắt có kết lớn khơng xét đến biến dạng cắt 37 3.10 Bài toán 9: Sử dụng lời giải giải tích tính tốn tần số dao động dầm FGM với điều kiện biên C-C Dầm FGM với phía Al2O3, Metal khơng ảnh hưởng nhiệt độ độ ẩm Thông số cho Bảng 3.1 Bảng 3.13: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM với phía Al2O3, Metal L / h  20   m Tham số vật liệu p Tham khảo 0.5 10 Nghiên cứu  z  22.2038 17.5329 15.9469 14.6832 13.4927 12.8115 Nghiên cứu  z  22.3058 17.6735 16.0826 14.8139 13.6197 12.9379 Eltaher cộng [8] 22.3744 17.5613 15.8612 14.5626 13.4733 12.8698 Nghiên cứu  z  20.3298 16.0520 14.6000 13.4431 12.3531 11.7295 Nghiên cứu  z  20.4318 16.1807 14.7242 13.5627 12.4695 11.8952 Eltaher cộng [8] 21.1096 16.5686 14.9645 13.7394 12.7116 12.1423 Nghiên cứu  z  18.8899 14.8923 13.5453 12.4720 11.4609 10.8822 Nghiên cứu  z  18.9466 15.0118 13.6605 12.5830 11.5688 10.9896 Eltaher cộng [8] 20.0330 15.7235 14.2013 13.0386 12.0633 11.5230 Dầm FGM với phía Al2O3, SUS304 không ảnh hưởng nhiệt độ độ ẩm Thông số cho Bảng 3.1 Bảng 3.14: Ảnh hưởng tỉ số L/h, hệ số  , tham số vật liệu p lên tần số dầm FGM với phía Al2O3, SUS304, L / h  20   m  Tham số vật liệu p Tham khảo 0.2 Nghiên cứu  z  22.2985 19.5841 16.0352 13.6947 Nghiên cứu  z  22.3705 19.7527 16.2025 13.8559 Ebrahimi cộng [14] 22.3447 19.6819 16.0094 13.7110 38 Nghiên cứu  z  20.2930 17.9318 14.6823 12.5392 Nghiên cứu  z  20.4831 18.0862 14.8355 12.6869 Ebrahimi cộng [14] 21.0751 18.5634 15.0997 12.9323 Nghiên cứu  z  18.9761 16.6376 13.6226 11.6343 Nghiên cứu  z  19.0048 16.7809 13.7648 11.7713 Ebrahimi cộng [14] 19.9954 17.6122 14.3260 12.2699 Nhận xét: - Tần số giảm dần tăng tham số vật liệu, hệ số phi cục - Tần số có kể đến biến dạng cắt lớn không kể đến biến dạng cắt 39 Chương KẾT LUẬN - KIẾN NGHỊ 4.1 Kết luận Các kết phân tích phương pháp sát so với kết nghiên cứu trước đó, khẳng định độ tin cậy độ xác phương pháp sử dụng nghiên cứu áp dụng cho tốn khác có liên quan với vật liệu khác lý thuyết dầm khác Sau thực nghiên cứu thân rút số nhận xét sau: - Lực ổn định tới hạn tần số dao động có kể đến biến dạng cắt cho kết nhỏ bỏ qua hiệu ứng biến dạng cắt Nó có ý nghĩa quan trọng cần thiết để phân tích ứng xử dầm FGM chịu tác động nhiệt độ độ ẩm - Khi tăng hệ số phi cục tham số vật liệu tần số dao động giảm dần độ võng dầm tăng dần - Khi tăng tham số vật liệu dẫn đến gia tăng thành phần vật liệu kim loại làm cho dầm dẻo Khi tăng hệ số phi cục có nghĩa tăng chiều dài dầm dầm có độ võng tăng tần số dao động giảm - Các giá trị phụ thuộc vào nhiệt độ, độ ẩm cho giá trị nhỏ giá trị không phụ thuộc nhiệt độ độ ẩm, ảnh hưởng nhiệt độ độ ẩm đến dầm FGM xác nhận - Khi tăng nhiệt độ độ ẩm tần số dao động chịu tải phân bố nhỏ tần số dao động chịu tải nhiệt, độ ẩm tuyến tính phi tuyến 4.2 Kiến nghị Dựa sở lý thuyết kết số phát triển, số định hướng sau thực hiện: - Phát triển lời giải Ritz cho phân tích tĩnh ổn định dầm composite chức với điều kiện biên khác - Sử dụng lý thuyết hiệu chỉnh tương tác ứng suất phân tích ứng xử dầm nano chức 40 TÀI LIỆU THAM KHẢO [1] Fu Y, Du H, Zhang S Functionally graded TiN/TiNi shape memory alloy films Materials Letters 2003;57(20):2995-2999 [2] Rahaeifard M, Kahrobaiyan MH, Ahmadian MT Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials In: 3rd International Conference on Micro- and Nanosystems 2009;DETC2009-86254:539544 [3] Witvrouw A, Mehta A The use of functionally graded poly-SiGe layers for MEMS applications Materials Science Forum 2005;492-493:255-260 [4] M.A.Eltaher, Samir A Emam, F.F Mahmoud Static and stability analysis of nonlocal functionally graded nanobeams Composite Structures 2013;82-88 [5] Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra, Rosa Penna Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation Composites Part B 2016; 208-219 [6] M Simsek, H.H.Yurtcu Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory Composite Structures 2012;10.038 [7] Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams Composite Structures 2015;80-89 [8] M.A.Eltaher, Samir A Emam, F.F Mahmoud Free vibration analysis of functionally graded size-dependent nanobeams Applied Mathematics and Computation 2012;7406-7420 [9] Abdelouahed Tounsi, Soumia Benguediab, Mohammed Sid Ahmed Houari, Abdelwahed Semmeh A new nonlocal beam theory with thickness stretching effect for nanobeams International Journal of Nanoscience 2013;1350025(8) [10] Boumediene Kheroubi, Abdelnour Benzair, Abdelouahed Tounsi, 41 Abdelwahed Semmeh A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams Advances in Nano Research 2016;251264 [11] Farzad Ebrahimi, Mohammad Reza Barati Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position Journal of Thermal Stresses 2016;0149-5739 [12] Farzad Ebrahimi, Erfan Salari Nonlocal thermo mechanical vibration analysis of functionally graded nanobeams in thermal environment Acta Astronautica 2015;29–50 [13] Farzad Ebrahimi, Mohammad Reza Barati Small scale effects on hygrothermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams Mechanics of Advanced Materials and Structures 2016;1537-6494 [14] Farzad Ebrahimi, Erfan Salari, Majid Ghadiri Thermo-mechanical vibration analysis of nonlocal temperature dependent FG nanobeams with various boundary conditions Composites Part B 2015;S1359-8368(15)00199-7 [15] Farzad Ebrahimi, Erfan Salari Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments Composite Structures 2015;S0263-8223(15)00195-6 [16] Navvab Shafiei, Seyed Sajad Mirjavadi, Behzad Mohasel Afshari, Samira Rabby, A.M.S Hamouda Nonlinear thermal buckling of axially functionally graded micro and nanobeams Composite Structures 168 (2017) 428–439 [17] Farzad Ebrahimi, Mohammad Reza Barati A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment Advances in Nano Research 2016;251-264 [18] Farzad Ebrahimi, Erfan Salari Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments Composite Structures 2015;S0263-8223(15)00195-6 [19] Shahab Saffari, Mohammad Hashemian, Davood Toghraie Dynamic 42 stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects Physica B: Physics of Condensed Matter 2017;S09214526(17)30329-0 [20] Asghari M, Ahmadian MT, Kahrobaiyan MH, Rahaeifard M On the size-dependent behavior of functionally graded micro-beams Materials & Design 2010;31(5):2324-2329 [21] Reddy JN Microstructure-dependent couple stress theories of functionally graded beams Journal of the Mechanics and Physics of Solids 2011;59(11):2382-2399 [22] Nateghi A, Salamat-talab M, Rezapour J, Daneshian B Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory Applied Mathematical Modelling 2012;36(10):4971-4987 [23] Akgoz B, Civalek O Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory Composite Structures 2013;98:314-322 [24] Asghari M, Rahaeifard M, Kahrobaiyan MH, Ahmadian MT The modified couple stress functionally graded Timoshenko beam formulation Materials & Design 2011;32(3):1435-1443 [25] Ke LL, Wang YS Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory Composite Structures 2011;93(2):342-350 [26] Simsek M, Kocaturk T, Akbas SD Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory Composite Structures 2013;95:740-747 [27] Farzad Ebrahimi, Mohammad Reza Barati Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory Composite Structures 2017;433-444 [28] Reddy JN Nonlocal theories for bending, buckling and vibration of beams International Journal of Engineering Science 45 (2007) 288–307 43 [29] Wang Q & Liew KM Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures Physics Letters A, 363 (2007), 236– 242 [30] Ansari R, & Sahmani S Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories International Journal of Engineering Science, 49 (2011) 1244–1255 [31] Murmu T & Pradhan SC Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM Physica E, 41 (2009) 1232–1239 [32] Aydogdu M A general nonlocal beam theory: Its application to nanobeam bending buckling and vibration Physica E, 41 (2009) 1651–1655 [33] Wang, C M., Kitipornchai, S., Lim, C W., & Eisenberger, M Beam bending solutions based on nonlocal Timoshenko beam theory Journal of Engineering Mechanics, 134 (2008) 475–481 [34] Reza Nazemnezhad & Shahrokh Hosseini-Hashemi Nonlocal nonlinear free vibration of functionally graded nanobeams Composite Structures 110 (2014) 192–199 [35] Mesut Simsek Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach International Journal of Engineering Science 105 (2016) 12–27 [36] Lu Lu, Xingming Guo, Jianzhong Zhao A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms International Journal of Engineering Science 119 (2017) 265–277 [37] Lu Lu, Xingming Guo, Jianzhong Zhao Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory International Journal of Engineering Science 116 (2017) 12–24 [38] Farzad Ebrahimi, Mohammad Reza Barati Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects Applied Physics A (2017) 123:5 44 [39] Farzad Ebrahimi, Mohammad Reza Barati Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects Acta Mech 2016; 10.1007/s00707-016-1755-6 [40] Farzad Ebrahimi, Mohammad Reza Barati Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory Applied Physics A 2016; 122-843 [41] Nguyen T-K, Nguyen B-D, Vo TP, Thai H-T Hygrothermal effects on vibration and thermal buckling behavior of functionally graded beams Composite Structures 176 (2017) 1050–1060 [42] Fazzolari FA, Carrera E Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions J Therm Stresses 2014;37(12):1449–81 [43] Reddy JN Mechanics of laminated composite plates: theory and analysis, CRC Press; 1997 [44] http://www.sbes.vt.edu/freeman/images/bone-construct.gif [45]http://www.aujardin.info/img/img7/bambous.jpg 45 PHỤ LỤC Code Matlab dùng cho tính tốn tần số dao động, lực ổn định tới hạn độ võng % % Free vibration of functionally graded nanobeams % Uniform temperature and moisture rise % clear all clc syms lamda warning off MATLAB:quad:MinStepSize global ec em nc nm rc rm p h b alphac alpham betac betam % Geometry h=0.5; % nm b=1; % nm L=10; % nm % Material parameter p1=[ ]; len_p=length(p1); % Scale coefficient mu=0; % Temperature and moisture rise DT=20; DC=1; T0=300;Tb=305; C0=0; Cb=C0; for j=1:len_p p=p1(j); 46 T1= T0 + DT; C1= C0 + DC; T1= Tb + DT;% LTR,NLTR % Materials % Silicon nitride (Si3N4) - Fully Ceramic - at T ec=348.43e9*(1-3.070e-4*T1+2.160e-7*T1.^2-8.946e-11*T1.^3); %Pa alphac=5.8723e-6*(1+9.095e-4*T1); betac=0; nc=0.24; rc=2370; % kg/m3 % Stainless steel (SUS3O4) - Fully Steel - at T em=201.04e9*(1+3.079e-4*T1-6.534e-7*T1.^2); %Pa alpham=12.330e-6*(1+8.086e-4*T1); betam=0.0005; nm=0.3262*(1-2.002e-4*T1+3.797e-7*T1.^2); rm=8166; ec=390;rc=3960;nc=0.3; % Ceramic AL2O3 em=210; rm=7800;nm=0.3; % Metal Steel coef=100*ec*h^3/12/q/L^4; %edit /12 % Stiffnesses of the beams A = double(integral(@f_A,-h/2,h/2)); B = double(integral(@f_B,-h/2,h/2)); BS = double(integral(@f_BS,-h/2,h/2)); D = double(integral(@f_D,-h/2,h/2)); DS = double(integral(@f_DS,-h/2,h/2)); Hs AS = double(integral(@f_Hs,-h/2,h/2)); = double(integral(@f_AS,-h/2,h/2)); Ks = double(integral(@f_Ks ,-h/2,h/2)); Es = double(integral(@f_Es ,-h/2,h/2)); Fs = double(integral(@f_Fs ,-h/2,h/2)); 47 Gs = double(integral(@f_Gs ,-h/2,h/2)); % Nt= double(integral(@f_Nt,-h/2,h/2))*DT; Nm= double(integral(@f_Nm,-h/2,h/2))*DC; % Mass coefficients I0 = double(integral(@f_I0,-h/2,h/2)); I1 = double(integral(@f_I1,-h/2,h/2)); I2 = double(integral(@f_I2,-h/2,h/2)); K2 = double(integral(@f_K2,-h/2,h/2)); J1 = double(integral(@f_J1,-h/2,h/2)); J2 = double(integral(@f_J2,-h/2,h/2)); L1 = double(integral(@f_L1 ,-h/2,h/2)); L2 = double(integral(@f_L2 ,-h/2,h/2)); % Stiffness matrix n=1; an=n*pi/L; % s11=A*an^2; s12=-B*an^3; s13=BS*an^2; s14=-Es*an; s21=-B*an^3; s22=D*an^4+ mu*(Nt+Nm)*an^4 +(Nt+Nm)*an^2; s23=-DS*an^3; s24=Fs*an^2; s31=BS*an^2; s32=-DS*an^3; s33=Hs*an^2-AS; s34=-Gs*an-AS*an; s41=-Es*an; s42=Fs*an^2; s43=-Gs*an-AS*an; s44=Ks-AS*an^2; ss =[s11 s12 s13 s14; s12 s22 s23 s24; s13 s23 s33 s34; s41 s42 s43 s44]; 48 % Mass matrix m11=mu*I0*an^2+I0; m12=-mu*I1*an^3-I1*an; m13=mu*J1*an^2+J1; m21=-mu*I1*an^3-1*an; m22=mu*I2*an^4+mu*I0*an^2+I2*an^2+I0; m23=-mu*J2*an^3-J2*an; m24=-mu*L1*an^2-L1; m31=mu*J1*an^2+J1; m32=-mu*J2*an^3-J2*an; m33=mu*K2*an^2+K2; m42=-mu*L1*an^2-L1; m44=-mu*L2*an^2-L2; mm=[m11 m12 m13 zeros; m21 m22 m23 m24; m31 m32 zeros m42 m33 zeros; zeros m44]; % Natural frequency omega=solve(det(ss-lamda*mm)); omega_n=sort(eval(sqrt(omega).*L^2/h*sqrt(12*rc/ec))); omega_n1(j)=min(omega_n); end % Geo matrix G22= mu*an^4+an^2; Kg=[zeros zeros zeros zeros; zeros G22 zeros zeros; zeros zeros zeros zeros; zeros zeros zeros zeros]; %% Buckling % Ncr=eig(double(Kl+Ks),double(Kg)); Ncr=solve(det((ss)-N0*(Kg)));%NEU TINH buckling THI MO HANG NAY LEN % Ncrr(jml,j)=min(double((12*Ncr*L^2/h^3/ec))) Ncr_n =sort(eval(12*Ncr*L^2/h^3/ec/b)); 49 Ncr_n1(j)=min(Ncr_n); end G22=(mu*an^2+1)*Qn; Kp=[zeros; G22; zeros; zeros]; dis=inv(ss)*Kp; gg=subs(gz,z,0); % deflection w w = w+(dis(2)+dis(4))*sin(an*L/2); %% def(jml,j) =double(w)*coef; %doi don vi end end end end kq=[def] 50 ... phần sử dụng lý thuyết đàn hồi phi cục môi trường nhiệt phân tích ứng xử dầm chức [12-15,34], phân tích phi tuyến dầm chức sử dụng lý thuyết chênh lệch biến dạng phi cục [27,35-40] lý thuyết ứng. .. nano sử dụng lý thuyết dầm khác lý thuyết phi cục Wang Liew [29] nghiên cứu ứng xử uốn dầm sử dụng lý thuyết dầm phi cục Euler-Bernoulli Timoshenko Ansari Sahmani [30] sử dụng lý thuyến dầm cổ... nhiều lý thuyết dầm phát triển lý thuyết dầm phi cục Euler-Bernoulli [7-8], lý thuyết dầm phi cục Timoshenko [6,18-19] Các lý thuyết kết hợp với lý thuyết dầm Euler-Bernoulli (EBT) [20-23], lý thuyết

Ngày đăng: 20/09/2022, 01:06

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Fu Y, Du H, Zhang S. Functionally graded TiN/TiNi shape memory alloy films. Materials Letters 2003;57(20):2995-2999 Khác
[2] Rahaeifard M, Kahrobaiyan MH, Ahmadian MT. Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: 3rd International Conference on Micro- and Nanosystems 2009;DETC2009-86254:539- 544 Khác
[3] Witvrouw A, Mehta A. The use of functionally graded poly-SiGe layers for MEMS applications. Materials Science Forum 2005;492-493:255-260 Khác
[4] M.A.Eltaher, Samir A. Emam, F.F. Mahmoud. Static and stability analysis of nonlocal functionally graded nanobeams. Composite Structures 2013;82-88 Khác
[5] Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra, Rosa Penna. Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation. Composites Part B 2016; 208-219 Khác
[6] M. Simsek, H.H.Yurtcu. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory.Composite Structures 2012;10.038 Khác
[7] Raffaele Barretta, Luciano Feo, Raimondo Luciano, Francesco Marotti de Sciarra. Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Composite Structures 2015;80-89 Khác
[8] M.A.Eltaher, Samir A. Emam, F.F. Mahmoud. Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation 2012;7406-7420 Khác
[9] Abdelouahed Tounsi, Soumia Benguediab, Mohammed Sid Ahmed Houari, Abdelwahed Semmeh. A new nonlocal beam theory with thickness stretching effect for nanobeams. International Journal of Nanoscience 2013;1350025(8) Khác
[11] Farzad Ebrahimi, Mohammad Reza Barati. Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position. Journal of Thermal Stresses 2016;0149-5739 Khác
[12] Farzad Ebrahimi, Erfan Salari. Nonlocal thermo mechanical vibration analysis of functionally graded nanobeams in thermal environment . Acta Astronautica 2015;29–50 Khác
[13] Farzad Ebrahimi, Mohammad Reza Barati. Small scale effects on hygro- thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams. Mechanics of Advanced Materials and Structures 2016;1537-6494 Khác
[14] Farzad Ebrahimi, Erfan Salari, Majid Ghadiri. Thermo-mechanical vibration analysis of nonlocal temperature dependent FG nanobeams with various boundary conditions. Composites Part B 2015;S1359-8368(15)00199-7 Khác
[15] Farzad Ebrahimi, Erfan Salari. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments.Composite Structures 2015;S0263-8223(15)00195-6 Khác
[16] Navvab Shafiei, Seyed Sajad Mirjavadi, Behzad Mohasel Afshari, Samira Rabby, A.M.S Hamouda. Nonlinear thermal buckling of axially functionally graded micro and nanobeams. Composite Structures 168 (2017) 428–439 Khác
[17] Farzad Ebrahimi, Mohammad Reza Barati. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Advances in Nano Research 2016;251-264 Khác
[18] Farzad Ebrahimi, Erfan Salari. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments.Composite Structures 2015;S0263-8223(15)00195-6 Khác
[20] Asghari M, Ahmadian MT, Kahrobaiyan MH, Rahaeifard M. On the size-dependent behavior of functionally graded micro-beams. Materials & Design 2010;31(5):2324-2329 Khác
[21] Reddy JN. Microstructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids 2011;59(11):2382-2399 Khác
[22] Nateghi A, Salamat-talab M, Rezapour J, Daneshian B. Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Applied Mathematical Modelling 2012;36(10):4971-4987 Khác

HÌNH ẢNH LIÊN QUAN

Vật liệu composite là một loại vật liệu hỗn hợp được hình thành từ hai hay nhiều loại vật liệu khác nhau, tùy theo cách kết hợp giữa vật liệu nền (matrix) và vật  liệu gia cường (reinforcement) dạng hạt hoặc sợi mà hình thành nên cấu trúc khác  nhau - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
t liệu composite là một loại vật liệu hỗn hợp được hình thành từ hai hay nhiều loại vật liệu khác nhau, tùy theo cách kết hợp giữa vật liệu nền (matrix) và vật liệu gia cường (reinforcement) dạng hạt hoặc sợi mà hình thành nên cấu trúc khác nhau (Trang 10)
Mặc dù đã có một số mơ hình dầm đã được phát triển dựa trên lý thuyết đàn hồi  phi  cục  bộ  nhằm  nghiên  cứu  ứng  xử  dầm  composite  chức  năng,  tuy  nhiên  nghiên cứu ứng xử dầm FGM sử dụng lý thuyết biến dạng cắt bậc cao dạng  quasi-3D cịn rất ít t - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
c dù đã có một số mơ hình dầm đã được phát triển dựa trên lý thuyết đàn hồi phi cục bộ nhằm nghiên cứu ứng xử dầm composite chức năng, tuy nhiên nghiên cứu ứng xử dầm FGM sử dụng lý thuyết biến dạng cắt bậc cao dạng quasi-3D cịn rất ít t (Trang 17)
trong đó Qn  q0 đối với tải trọng hình sin và 40 - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
trong đó Qn  q0 đối với tải trọng hình sin và 40 (Trang 24)
Bảng 2.1: Các điều kiện biên - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 2.1 Các điều kiện biên (Trang 27)
Bảng 3.1:Thông số của dầm FGM - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.1 Thông số của dầm FGM (Trang 29)
Bảng 3.2: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.2 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 30)
Bảng 3.3: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.3 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 31)
Hình 3.1: Ảnh hưởng của tham số p, hệ số  lên tần số dao động - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.1 Ảnh hưởng của tham số p, hệ số  lên tần số dao động (Trang 32)
Hình 3.3: Ảnh hưởng của hệ số , tham số p lên tấn số dao động trong - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.3 Ảnh hưởng của hệ số , tham số p lên tấn số dao động trong (Trang 33)
Hình 3.2: Ảnh hưởng của hệ số , lên 3 mode dao động có tính đến - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.2 Ảnh hưởng của hệ số , lên 3 mode dao động có tính đến (Trang 33)
Bảng 3.4: Ảnh hưởng của hệ số , tham số p đến lực ổn định tới hạn của - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.4 Ảnh hưởng của hệ số , tham số p đến lực ổn định tới hạn của (Trang 34)
Bảng 3.5: Ảnh hưởng của hệ số , tham số p đến lực ổn định tới hạn của - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.5 Ảnh hưởng của hệ số , tham số p đến lực ổn định tới hạn của (Trang 35)
Hình 3.4: Ảnh hưởng của hệ số , tham số p lên lực ổn định - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.4 Ảnh hưởng của hệ số , tham số p lên lực ổn định (Trang 36)
Bảng 3.6: Ảnh hưởng của hệ số , tham số p đến độ võng cực đại của dầm - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.6 Ảnh hưởng của hệ số , tham số p đến độ võng cực đại của dầm (Trang 37)
Bảng 3.7: Tần số dao động của dầm FGM chịu tải phân bố đều dưới tác - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.7 Tần số dao động của dầm FGM chịu tải phân bố đều dưới tác (Trang 38)
Hình 3.6: Ảnh hưởng của tham số p, nhiệt độ và độ ẩm lên tần số dao - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.6 Ảnh hưởng của tham số p, nhiệt độ và độ ẩm lên tần số dao (Trang 39)
Hình 3.7: Ảnh hưởng của nhiệt độ và độ ẩm lên tần số dao động khi - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.7 Ảnh hưởng của nhiệt độ và độ ẩm lên tần số dao động khi (Trang 40)
Bảng 3.8: Tần số dao động của dầm FGM dưới tác động nhiệt và độ ẩm - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.8 Tần số dao động của dầm FGM dưới tác động nhiệt và độ ẩm (Trang 41)
Hình 3.8: Ảnh hưởng nhiệt độ lên tần số dao động khi chịu tải phân bố đều, tuyến - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Hình 3.8 Ảnh hưởng nhiệt độ lên tần số dao động khi chịu tải phân bố đều, tuyến (Trang 42)
Bảng 3.11: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.11 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 44)
Bảng 3.12: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.12 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 46)
Bảng 3.13: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.13 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 47)
Bảng 3.14: Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số - Phân tích ứng xử của dầm composite sử dụng lý thuyết đàn hồi phi cục bộ
Bảng 3.14 Ảnh hưởng của tỉ số L/h, hệ số , tham số vật liệ up lên tần số (Trang 47)

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w