1. Trang chủ
  2. » Luận Văn - Báo Cáo

Master building

195 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 195
Dung lượng 10,8 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH ĐỒ ÁN TỐT NGHIỆP NGÀNH CNKT CƠNG TRÌNH XÂY DỰNG MASTER BUILDING GVHD : Dr NGUYỄN VĂN CHÚNG SVTH : NGUYỄN PHÚ NAM SKL007281 Tp Hồ Chí Minh, tháng 08/2020 HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION -  - CAPSTONE PROJECT MASTER BUILDING ADVISOR: DR.NGUYỄN VĂN CHÚNG STUDENT ID: 16149007 CLASS : 2016-2020 STUDENT: NGUYỄN PHÚ NAM Ho Chi Minh city 017/08/2020 HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION FACULTY FOR HIGH QUALITY TRAINING CAPSTONE PROJECT MASTER BUILDING PROJECT ADVISOR: Dr.Nguyễn Văn Chúng STUDENT: Nguyễn Phú Nam Student ID: 16149007 Major: Class : CIVIL ENGINEERING 2016 Ho Chi Minh City, August 2020 SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness HO CHI MINH CITY FACULTY OF HIGH QUALITY TRAINING GRADUATION PROJECT TASK Student: Nguyễn Phú Nam Student ID: 16149007 Major: CIVIL ENGINEERING PROJECT NAME: MASTER BUILDING OFFICE BUILDING Preliminary data  Architectural document (has already edited following advisor’s instruction)  Geotechnical survey Theoretical and calculation content a Architecture  Represent architectural drawings b Structure  Calculation, design typical floor slab  Calculation, design stair case and water tank  Model, Calculation, design khung trục C trục c Foundation  Gather geotechnical data  Design 02 practical foundation solutions Demonstration and drawings  01 presentation 01 appendix  19 A1 drawing ( 05 architecture , 14 structure) Advisor Date of assignment Completion date : Dr Nguyễn Văn Chúng : /1/2020 : Tp HCM, ngày tháng năm 2020 Advisor’s confirmation Faculty’s administration confirmation THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness Ho Chi Minh City, January 20, 2020 ADVISOR’S EVALUATION SHEET Student name: Student ID: Student name: Student ID: Student name: Student ID: Major: Project title: Advisor: EVALUATION Content of the project: Strengths: Weaknesses: Approval for oral defense? (Approved or denied) Overall evaluation: (Excellent, Good, Fair, Poor) Mark:……………….(in words: ) Ho Chi Minh City, month day, year ADVISOR (Sign with full name) THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness Ho Chi Minh City, January 20, 2020 PRE-DEFENSE EVALUATION SHEET Student name: Student ID: Student name: Student ID: Student name: Student ID: Major: Project title: Name of Reviewer: EVALUATION Content and workload of the project Strengths: Weaknesses: Approval for oral defense? (Approved or denied) Overall evaluation: (Excellent, Good, Fair, Poor) Mark:……………….(in words: ) Ho Chi Minh City, month day, year REVIEWER (Sign with full name) THE SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom– Happiness EVALUATION SHEET OF DEFENSE COMITTE MEMBER Student name: Student ID: Student name: Student ID: Student name: Student ID: Major: Project title: Name of Defense Committee Member: EVALUATION Content and workload of the project Strengths: Weaknesses: Overall evaluation: (Excellent, Good, Fair, Poor) Mark:……………….(in words: ) Ho Chi Minh City, month day, year COMMITTEE MEMBER (Sign with full name) PREFACE I did my best to complete this project with the help of Dr.Nguyễn Văn Chúng I am would like to send my sincere thanks to Dr.Nguyễn Văn Chúng for the guidance and support as well as providing necessary information regarding the project Ho Chi Minh city, 17th August 2020 Student Nguyễn Phú Nam Table of pictures Figure 1.1: Perspective image of the building 19 Figure 1.2: Ground floor plan 21 Figure 1.3:Typical floor plan 21 Figure 1.4:Architectural elevation axis1-11 22 Figure 1.5: Elevation 1a-7a 22 Figure 3.1: Typical slab details 34 Figure 3.2: Restroom slab details 35 Figure 3.3: Basement slab details 37 Figure 3.4: Rooftop slab details 37 Figure 3.5 dynamic status of building 43 Figure 3.6 modal X-direction 46 Figure 3.7 modal Y-direction 46 Figure 3.8 :Coordinate system when determining the spatial correlation coefficient 49 Figure 3.9: Graph determines the dynamic factor  50 Figure 3.10:Reliability and importance factor 54 Figure 3.11 define response spectrum functions 62 Figure 3.12 definition of response spectrum 62 Figure 3.13 load case data EQY 63 Figure 3.14 Load case data EQY 63 Figure 4.1: Beam-slab arrangement system 66 Figure 4.2: Moment diagram X direction (Layer A ) 68 Figure 4.3: Moment diagram Y direction (Layer B) 68 Figure 4.4: Typical floor short-term displacement 69 Figure 4.5 Typical floor long term displacement 69 Figure 4.6 1st floor slab plan 71 Figure 4.7 Load case f1 74 Figure 4.8 Load case f2 75 Figure 4.9 Load case f3 75 Figure 4.10 load combination for deflection situation 76 Figure 5.5.1: Staircase CT1 plan view 79 Figure 5.2 Stair CT2 80 Figure 5.3 Stair case detail 80 1 1.2  (0.82  10.834  11.3  3.66  42.7  11.3  6.16  33.2  1.3  2.7)  2480.85  kN / m   RII  tc  Pmax  1.2 RII    tc Condition  Pmin   Satisfied,so the the ground soil under the foundation satisfy the  P tc  R  II  tb  conditions of stability 10.6.4 Check the settlement of the foundation: Divide the soil layers under the foundation into parts with the thickness of hi  1(m)  ibt  5 igl (Position to stop calculating the settlement)  ibt   ibt1   i hi ;  igl  k0i   0gli + k0i Look up table C.1, TCVN 936 - 2012, Depends on the ratio  0bt  Wqu Bqu  Lqu  Lqu Bqu and Z Bqu 86551.8 N †c 13592.17  3128.23 kN / m ;  0gl    74.485 kN / m2 10.834  16.834 Bqu  Lqu 10.84 16.834    +According to C.1.6, TCVN 9362 - 2012, Calculate the settlement by the equation : n  h gl i S    i 0 Ei +Which   0.8 and hi – Thickness of “ith” soil layer +Ei-Elastic modulus of “ith”layer i  ibt  igl E Si (kN/m2) (kN/m2) (kN/m2) (kN/m2) (cm) 11.3 3128.23 74.485 22400 41.99812 0.00266 0.997 11.3 3231.462 75.75125 22400 42.65886 0.002705 0.994 11.3 3338.1 77.03902 22400 43.32999 0.002751 0.991 11.3 3448.257 78.34868 22400 44.01168 0.002798 0.988 11.3 3562.05 79.68061 22400 44.7041 0.002846 0.985 11.3 3679.597 81.03518 22400 45.40741 0.002894 0.981 11.3 3801.024 82.41278 22400 46.12178 0.002943 0.976 11.3 3926.458 83.81379 22400 46.84739 0.002993 0.972 11.3 4056.031 85.23863 22400 47.58442 0.003044 Eleme ntal hi Zi Z/B (m) (m) 1 1 k0 layer 179  10 0.969 11.3 4189.88 86.68768 22400 48.33305 0.003096 11 10 0.959 11.3 4328.146 88.16137 22400 49.09345 0.003149 Total settlement S 0.03188 Satisfied Check 10.6.5 Check the punching shear condition According 6.2.5.4 TCVN 5574-2012 Calculation for punching shear condition of column to foundation footing calculated by: In which : P : Total of puncture force of the pile reacted to the foundation footing bc  0.8m, h c  0.8m : Dimension of the column C8 and C9 h o  h d  0.15  1.85m : effective height of the foundation footing; C1  1.5m;C2  1.15m : the distance in the plane from the edge of the column to the edge of the pier bottom R bt  1,05x103 kN / m : Tensile strength of the concrete 1 ,  : Calculated by: 2 h   ho   1.85   1.85  1  1.5   o   1.5     2.38;   1.5     1.5     2.84  1.5   1.15   C1   C2  2 Figure 10.13 Punching shear tower of the foundation M6 180 Figure 10.14 Spring reactions of foundation M6  P=P1+P2+P3+P4+P5+P6+P7+P8 =19107.869kN)  P  2.38  0.8  1.15  2.84  0.8  1.51.85 1.05 103  21703.5525(kN )  The height of the foundation footing satisfied the punching shear condition 10.6.6 Calculate Reinforcement for foundation footing Assume a=150(mm), h0  h  a  2000  150  1850(mm) Rebar percentage min  0.05%    As   R 0.573x1x17   max  R b b   2.67% bh o Rs 365 Figure 10.15 Moment value in X-direction 181 Figure 10.16 Moment value in Y directions Figure: Moment value In X and Y directions -Moment value in X direction: + Mmax=8252.7 kNm/5m=1650.54(kNm/m) + Mmin=163.24kNm/5m=32.65(kNm/m) -Moment value in Y direction: + Mmax=12051.97kNm/11m=1095.634(kNm/m) + Mmin=392.47kNm/11m=84.77(kNm/m) -Calculate: Direc tion M b h0 As Rebar (kNm) (m) (m) (mm2)  As choose a (mm2) (%) (mm) X upper 1650.54 1.85 0.0283 0.0287 2232 28 200 3078.76 0.00245 X lower 32.65 1.85 0.00056 0.00056 43.53 16 250 804.25 0.00004 Y upper 1095.63 1.85 0.0188 0.019 1474.3 28 250 2463 0.00161 Y lower 84.77 1.85 0.00146 0.00146 113.06 16 250 804.25 0.00005 182 10.7 Design foundation for the elevator shear wall core We take the internal force of the elevator by defining whole structure to Pier1 Story Pier Load B1 Loc ULS9 Bottom P(kN) -43743.98 V2(kN) V3(Kn) T(Knm) M2(kNm) -451.385 367.3807 204.8736 M3(kNm) -30662.31 13713.68 Equivalent Value of Internal forces due to CSI-Etabs local axes: Foundation Combo Case M6 ULS16,ULS9 Nmax,Mtu tt (kN) N max 43743.98 M xtt (kNm) M ytt (kNm) 30662.31 13713.68 The local axes color convention for joints, frame elements, shell elements, etc is as follows: Figure 10.17 local axes local axis: red local axis: green local axis: blue In Etabs software, there are coordinate systems that you need to know, one is the main coordinate system (x, y, z) and the other is the local coordinate system (1-1,2-2, 3- 3) Each element has its own local coordinate system Thanks to this coordinate system, we can determine the internal force components of elements such as V2, M3 10.7.1 Number of piles and pile arrangement nc  N0  [ P] Which : N :Design axial force  :a factor including the effects of the moment and weight of pile cap   1.2  1.4 P :Design load bearing capacity(kN) 183 nc  N0 43743  1.4  18.5 [ P] 3310  Choose 18 piles Figure 10.18 piles arrangement of core wall foundation Figure 10.19 Pile spring reactions of corewall foundation Dimension of the foundation footing: LxBxH=17x8x2(m) 184 10.7.2 Check the Pile reaction  Pmax  2916.739(kN)  Pd 1000  3310(kN) Check: Pmin  1911.985(kN)   The pile satisfied destruction condition 10.7.3 Check ground stability and settlement on bottom of conventional foundation block Average frictional angle of soil layers : II ,tb   II ,i  li l i  833.918  19.53 42.7 Bqu  ( B  d )  2Lc tan Lqu  ( L  d )  2Lc tan    (8  1)   40  tan 19.53  13.834(m)  (17  1)   40  tan 19.53  22.84(m) H qu  Lcoc  H dai  40   42(m  Weight of foundation footing and pile : Pfooting  pile  [Vpile  V footing ]   b  (0.7854  40 18  17   2)  25  20937.2(kN ) Total weight of the foundation: Psoil  Bqu  Lqu  H qu   sub ,t b  13.834  22.84  42 10.12  134299.28(kN)  Wqu  Ppile footing  Psoil  20937.2  134299.28  155236.48(kN) Standard load applied on foundation M6:  N tc  M tt 30662 N tt 43743.98   38038.24(kN ); M xtc  x   26662.61(kNm) 1.15 1.15 1.15 1.15 M  tc y M ytt 1.15  13713.68  11924.94(kNm) 1.15 Standard pressure at the foundation M6: ex  ey  M xtc 26662.61   0.14 tc N  Wqu 38038.24  155236.48 M ytc N  Wqu tc  11924.94  0.0616 38038.24  155236.48 185 N tc  Wqu  6ex 6ey  Pmax   1    Lqu  Bqu  Lqu Bqu  38038.24  155236.48   0.14  0.0616    1     650.53(kN ) 13.834  22.84 22.84 13.834   tc N tc  Wqu  6ex 6ey  Pmin   1     572.85( kN ) Lqu  Bqu  Lqu Bqu  P  Pmin 650.53  572.85 Ptbtc  max   611.69( kN ) 2 tc tc tc 10.7.4 Load bearing capacity of ground under the bottom of the foundation(4.6.9,TCVN 9362-2012) RII  m1  m2  A  Bqu   II  B  h   II  D  cII   II  h0  k tc In Which m1  1.2, m  k tc  (4.6.10-TCVN 9362  2012)   18.26 =>A  0.82,B  3.66,D  6.16 (Table 14- TCVN 9362-2012)  II  11.3  kN / m3  - Density of the soil layers above the bottom of the foundation +  II    h   10.08  kN / m  -Density of the soil layers below the bottom of the h i i i foundation + c  33.2  kN / m  Sticky force of the soil layers below the the foundation +Depth to the ground of the basement: h0  h  htd  42.7  40  2.7(m) +Depth from the ground of the basement: + h1  40(m) h  0.25(m) -Corresponding is the thickness of the soil layer above the conventional foundation bottom and the thickness of the basement floor +  kc  25  kN / m3   calculated value of the average weight of the basement floor volume 1 1.2  (0.82  13.834  11.3  3.66  42.7  11.3  6.16  33.2  1.3  2.7)  2514.21 kN / m   RII  186 tc  Pmax  1.2 RII    tc Condition  Pmin   Satisfied,so the the ground soil under the foundation satisfy the  P tc  R  II  tb  conditions of stability 10.7.5 Check the settlement of the foundation: Divide the soil layers under the foundation into parts with the thickness of hi  1(m)  ibt  5 igl (Position to stop calculating the settlement)  ibt   ibt1   i hi ;  igl  k0i   0gli + k0i Look up table C.1, TCVN 936 - 2012, Depends on the ratio  0bt  Wqu Bqu  Lqu  Lqu Bqu and Z Bqu 155236.48 N †c 38038.24  4232.88 kN / m2 ;  0gl    120.386 kN / m2 13.834  22.84 Bqu  Lqu 13.834  22.84    +According to C.1.6, TCVN 9362 - 2012, Calculate the settlement by the equation : n  h gl i S    i 0 Ei +Which   0.8 and hi – Thickness of “ith” soil layer +Ei-Elastic modulus of “ith”layer Eleme ntal Z/B i  ibt  igl E Si (kN/m2) (kN/m2) (kN/m2) (kN/m2) (cm) hi Zi (m) (m) 1 11.3 4232.88 120.386 22400 35.02996 0.151174 1 0.997 11.3 4372.565 120.836 22400 36.76492 0.156163 0.994 11.3 4516.86 118.9331 22400 38.58581 0.161316 0.991 11.3 4665.916 117.0601 22400 40.49689 0.16664 0.988 11.3 4819.891 115.2166 22400 42.50262 0.172139 0.985 11.3 4978.948 113.4022 22400 44.60769 0.17782 0.981 11.3 5143.253 111.6163 22400 46.81702 0.183688 0.976 11.3 5212.98 109.8586 22400 49.13578 0.189749 0.972 11.3 5318.309 108.1286 22400 51.56937 0.196011 10 0.969 11.3 5469.423 106.4257 22400 54.1235 0.202479 11 10 0.959 11.3 5556.514 104.7497 22400 56.80413 0.209161 k0 layer Total settlement S Check 1.966 Satisfied 187  10.7.6 Check the punching shear condition Figure 10.20 Punching shear tower of the corewall foundation Check punching shear condition for Shear tower of elevation core cmax  1.375(m) um   hc  bc  2c   2(17   1.375)  55.5(m) Fxt   Pelevator  48971.654(kN ) Fxt  Fcx   Rbt um h0 h0 2c  11.2 103  55.5  2.7 2.7   88275.27(kN ) 2 1.375  51206.974( kN )  Satisfied the punching shear condition Check punching shear condition for Shear tower of elevation core cmax  1(m) um   hc  bc  2c   2(4.6  4.6  1)  22.4(m) Fxt   Pelevator  48971.654(kN ) 188 Fxt  Fcx   Rbt um h0 h0 2c  11.2 103  22.4  2.7 2.7   48988.8( kN ) 2 1  Satisfied the punching shear condition 10.8 Calculate reinforcement For the foundation footing Assume a=150(mm), h0  h  a  2000  150  1850(mm) Rebar percentage min  0.05%    As   R 0.573x1x17   max  R b b   2.67% bh o Rs 365 Figure 10.21 Moment in X direction of core wall foundation Figure 10.22 Moment in Y-direction of corewall foundation 189 Figure: Moment value In X and Y directions -Moment value in X direction: + Mmax=17978.5 kNm/4m=4494.63(kNm/m) + Mmin=163.5kNm/4m=40.875(kNm/m) -Moment value in Y direction: + Mmax=12334.0227kNm/4.25m=2092.123(kNm/m) + Mmin=854.3128kNm/4.25m=201.015(kNm/m) -Calculate: Direc tion M (kNm) b h0 As Rebar (m) (m) (mm2)  As choose a (mm2) (%) (mm) X upper 4494.63 1.85 0.077 0.08 6241.8 32 125 6433.98 0.003 X lower 40.875 1.85 0.0007 0.0007 54.5 16 250 804.25 0.00003 Y upper 2092.12 1.85 0.036 0.037 2840.5 28 200 3078.76 0.0015 Y lower 201.015 1.85 0.0034 0.0034 268.4 16 250 804.25 0.00015 190 REFERENCES [1] TCVN 5574:2012, Kết cấu bê tông bê tông cốt thép – Tiêu chuẩn thiết kế, Nhà xuất Xây dựng, 2012 [2] TCVN 2737:1995, Tải trọng tác động – Tiêu chuẩn thiết kế, Nhà xuất Xây dựng, 2010 [3] TCXD 229:1999, Chỉ dẫn tính tốn thành phần động tải trọng gió theo TCVN 2737:1995, Nhà xuất Xây dựng, 1999 [4] TCXD 198:1997, Nhà cao tầng – Thiết kế kết cấu bê tông cốt thép toàn khối, Nhà xuất Xây dựng, 1997 [5] TCXD 195:1997, Nhà cao tầng – Thiết kế cọc khoan nhồi, Nhà xuất Xây dựng, 1997 [6] TCXD 205:1998, Móng cọc – Tiêu chuẩn thiết kế, Nhà xuất Xây dựng, 1998 [7] TCVN 9362:2012, Tiêu chuẩn thiết kế nhà cơng trình, Nhà xuất Xây dựng, 2012 [8] TCVN 10304:2014, Móng cọc – Tiêu chuẩn thiết kế, Nhà xuất Xây dựng, 2014 [9] TCVN 9386:2012, Thiết kế cơng trình chịu động đất, Nhà xuất Xây dựng, 2012 [10] TCVN 4200:2012, Đất xây dựng – Phương pháp xây dựng tính nén lún phịng thí nghiệm, Nhà xuất Xây dựng, 2012 [11] TCXDVN 323:2004, Nhà cao tầng – Tiêu chuẩn thiết kế, Nhà xuất Xây dựng, 2004 [12] Phan Quang Minh, Ngô Thế Phong, Nguyễn Đình Cớng, Kết cấu bê tơng cốt thép – Phần cấu kiện bản, Nhà xuất Khoa học Kỹ thuật, 2008 [13] Ngô Thế Phong, Lý Trần Cường, Trịnh Kim Đạm, Nguyên Lê Ninh, Kết cấu bê tông cốt thép – Phần kết cấu nhà cửa, Nhà xuất Khoa học Kỹ thuật, 2008 [14] Nguyễn Đình Cớng, Tính tốn thực hành cấu kiện bê tông cốt thép theo tiêu chuẩn TCXDVN 356:2005, Tập 1, Nhà xuất Xây dựng, 2009 [15] Nguyễn Đình Cớng, Tính tốn thực hành cấu kiện bê tơng cốt thép theo tiêu chuẩn TCXDVN 356:2005, Tập 2, Nhà xuất Xây dựng, 2008 [16] Nguyễn Đình Cớng, Tính tốn tiết diện cột bê tông cốt thép, Nhà xuất Xây dựng, 2006 [17] Nguyễn Lê Ninh, Cơ sở lý thuyết tính tốn cơng trình chịu động đất, Nhà xuất Khoa học Kỹ thuật, 2011 191 [18] Lê Đình Q́c, Tài liệu hướng dẫn ETABS version 8.4.8, Phịng tính toán học, Khoa Kỹ thuật Xây dựng, Đại học Bách khoa TP Hồ Chí Minh, 2006 [19] Lê Thanh Huấn, Kết cấu nhà cao tầng bê tông cốt thép, Nhà xuất Xây dựng, 2009 [20] Châu Ngọc Ẩn, Nền móng, Nhà xuất Đại học Q́c gia TP Hồ Chí Minh, 2011 [21] Võ Phán, Hồng Thế Thao, Phân tích tính tốn móng cọc, Nhà xuất Đại học Q́c gia TP Hồ Chí Minh, 2013 [23] Trương Hữu Tâm Thảo, Trụ sở điều hành trung tâm thương mại Viettel, Luận văn tốt nghiệp, Đại học Bách khoa TP Hồ Chí Minh, 2013 [24] CSI User’s Manual ETABS 2017 192 S K L 0 ... country The construction of office buildings is essential to create more business environment for companies and businesses With the above goals, "MASTER BUILDING OFFICE BUILDING " is invested by the... Student: Nguyễn Phú Nam Student ID: 16149007 Major: CIVIL ENGINEERING PROJECT NAME: MASTER BUILDING OFFICE BUILDING Preliminary data  Architectural document (has already edited following advisor’s... stiffness, suitable for buildings with a height of over 25 floors, buildings with a height of less than 25 storeys of this type are rarely used Tubular structure system can be used for building type with

Ngày đăng: 08/08/2022, 23:21

w