Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
2,1 MB
Nội dung
A M U I Lý chọn đề tài Trong chương trình hình học lớp 10 có phần quan trọng hình học phổ thơng phương pháp toạ độ mặt phẳng, phần tiếp nối hình học phẳng cấp THCS nhìn quan điểm đại số giải tích Như tốn hình học toạ độ mặt phẳng mang chất tốn hình học phẳng Tuy nhiên giải tốn hình học toạ độ học sinh thường khơng trọng đến chất hình học tốn ấy, phần học sinh ngại hình học phẳng nghĩ hình học phẳng khó, phần giáo viên dạy không trọng khai thác hướng dẫn cho học sinh Do hiệu giải tốn khơng cao mà phân loại dạng tốn, phương pháp giải tốn khơng rõ ràng Vì vậy, thực tế yêu cầu phải trang bị cho học sinh hệ thống phương pháp suy luận giải tốn hình học toạ độ mặt phẳng Với ý định đó, sáng kiến kinh nghiệm muốn nêu cách định hướng tìm lời giải tốn hình học toạ độ mặt phẳng dựa chất hình học phẳng tốn II C¬ së lý luận đề tài Thc trng ng trc mt tốn hình học toạ độ mặt phẳng học sinh thường lúng túng đặt câu hỏi: “ Phải định hướng tìm lời giải tốn từ đâu ?” Một số học sinh có thói quen khơng tốt đọc đề chưa kỹ vội làm ngay, có thử nghiệm dẫn tới kết quả, nhiên hiệu suất giải toán khơng cao Với tình hình để giúp học sinh định hướng tốt q trình giải tốn hình học toạ độ mặt phẳng, người giáo viên cần tạo cho học sinh thói quen xem xét tốn nhiều góc độ, khai thác yếu tố đặc trưng hình học tốn để tìm lời giải Trong việc hình thành cho học sinh khả tư theo TIEU LUAN MOI download : skknchat123@gmail.com phương pháp giải điều cần thiết Việc trải nghiệm qua q trình giải tốn giúp học sinh hồn thiện kỹ định hướng giải tốn Cần nhấn mạnh điều rằng, đa số học sinh sau tìm lời giải cho tốn hình học toạ độ mặt phẳng thường khơng suy nghĩ, đào sâu thêm Học sinh không ý đến chất hình học phẳng tốn nên làm nhiều tốn hình học toạ độ khơng phân loại dạng tốn chất toán Kết quả, hiệu thực trạng với thực trạng ra, thông thường học sinh dễ dàng cho lời giải tốn có cấu trúc đơn giản Cịn đưa tốn khác chút cấu trúc học sinh thường tỏ lúng túng khơng biết định hướng tìm lời giải tốn Từ đó, hiệu giải tốn học sinh bị hạn chế nhiều Trước thực trạng học sinh, tơi thấy cần thiết phải hình thành cho học sinh thói quen xem xét tốn hình học toạ độ mặt phẳng theo chất hình học phẳng Và song song với lời giải cho tốn hình học toạ độ mặt phẳng, yêu cầu học sinh chất tốn hình phẳng tương ứng, từ phân tích ngược lại cho tốn vừa giải Trong sáng kiến kinh nghiệm nhiều nội dung áp dụng có hiệu Việc đưa nội dung nhằm khai thác tính chất hình học phẳng để định hướng tìm lời giải tốn hình học toạ độ xem việc chất hình học phẳng bổ trợ cho giải tốn khơng phải giải hình học phẳng Qua giúp học sinh nhận thức rằng: “Mỗi tốn hình học toạ độ mặt phẳng ln chứa đựng tốn hình phẳng tương ứng” Vì phân tích chất tốn hình học phẳng để bổ trợ cho việc giải tốn hình học toạ độ mặt phẳng suy nghĩ có chủ đích, giúp học sinh chủ động việc tìm kiếm lời giải phân loại cách tương đối tốn hình học toạ độ mặt phẳng TIEU LUAN MOI download : skknchat123@gmail.com B NỘI DUNG I CÁC GIẢI PHÁP THỰC HIỆN Tổ chức cho học sinh hình thành kỹ giải tốn thơng qua (hay nhiều) buổi học có hướng dẫn giáo viên Tổ chức rèn luyện khả định hướng giải toán học sinh Trong yêu cầu khả lựa chọn lời giải ngắn gọn sở phân tích tốn hình học phẳng tương ứng Tổ chức kiểm tra để thu thập thông tin khả nắm vững kiến thức học sinh Trong tốn hình học toạ độ mặt phẳng yêu cầu học sinh thực phân tích chất hình học phẳng đưa hướng khai thác mở rộng cho toán Cung cấp hệ thống tập mở rộng để học sinh tự rèn luyện II CÁC BIỆN PHÁP TỔ CHỨC THỰC HIỆN Nội dung triển khai thông qua buổi học (mỗi buổi học tiết) Các buổi học giáo viên nêu vấn đề định hướng cách suy nghĩ giải tốn, giáo viên hướng dẫn làm ví dụ mẫu Qua đó, cách phân tích hình phẳng tương ứng với tốn, giáo viên phân tích lợi ích việc “suy nghĩ có định hướng theo chất hình học phẳng tốn hình học toạ độ mặt phẳng” phân tích cho học sinh thấy việc lựa chọn phương pháp giải ngẫu nhiên mà chất chứa nguyên nhân sâu xa chất Đó cấu trúc tốn, hình thức tốn mối quan hệ “tất yếu” yếu tố tạo nên tốn Cũng điều mà việc phân tích tốn toạ độ hình phẳng tương ứng mặt giúp học sinh hiểu chất TIEU LUAN MOI download : skknchat123@gmail.com toán, mặt khác giúp học sinh biết cách định hướng việc tìm lời giải tốn Để buổi học đạt hiệu quả, thực sau học xong phần hình học toạ độ mặt phẳng lớp 10 Để tăng cường tính chủ động cho học sinh buổi học thứ cung cấp cho học sinh hệ thống tập đề thi tốn hình học toạ độ mặt phẳng cho học Yêu cầu học sinh nhà chuẩn bị lời giải , phân loại tốn thành nhóm tương tự trả lời câu hỏi :"bản chất tốn gì? có tổng qt, mở rộng, phân loại dạng tốn khơng?" Bài tốn hình học toạ độ mặt phẳng xuất thường xuyên đề thi ĐH, đề thi học sinh giỏi với mức độ tương đối khó Vì để giải dạng tốn cần tìm hiểu chất xây dựng phương pháp tư giải toán đặc trưng cho loại toán Trong buổi học nghiên cứu phương pháp tư giải toán: "phân tích chất hình học phẳng tốn hình học toạ độ tương ứng" Trước hết ta cần ý chuyển tốn toạ độ tốn hình phẳng sở kiện toán cho Sau ta phân tích tính chất hình học hình phẳng để định hướng tìm lời giải tốn III MỘT SỐ VÍ DỤ ĐIỂN HÌNH Các ví dụ Một tốn hình học toạ độ giải theo ba hướng sau: H1: Giải hồn tồn theo quan điểm hình học giải tích H2: Giải hồn tồn theo quan điểm hình học phẳng sau áp dụng vào toạ độ H3: Khai thác yếu tố hình học phẳng để giải tốn hình giải tích Mỗi hướng giải tốn có ưu riêng cho tốn nói chung H3 thường hiệu TIEU LUAN MOI download : skknchat123@gmail.com Thực hành giải tốn: Bước 1: Vẽ hình phẳng biểu thị cho toán Trên sở kiện u cầu tốn phân tích yếu tố hình phẳng cần thiết để giải tốn Bước 2: Lập sơ đồ bước giải toán Bước 3: Trình bày lời giải tốn theo sơ đồ bước Ví dụ Cho tam giác ABC có góc C nhọn, tâm đường trịn ngoại tiếp tam giác I(-2; 1) thoả mãn Chân đường cao kẻ từ A đến BC D(-1; -1), đường thẳng AC qua điểm M(-1; 4) Tìm toạ độ A, B biết đỉnh A có hồnh độ dương M B A I D C Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Ta có , mà suy tam giác ADC vuông cân tai D nên DA = DC TIEU LUAN MOI download : skknchat123@gmail.com mặt khác IA = IC ID trung trực AC Bước Lập sơ đồ bước giải toán +) Chứng minh +) Viết phương trình đường thẳng AC: AC qua M có véc tơ pháp tuyến +) Tính d(D,AC) suy +) Do nên biểu thị toạ độ điểm A theo tham số a Từ độ dài DA suy toạ độ điểm A +) Viết phương trình BD: BD qua D có véc tơ pháp tuyến +) nên biểu thị toạ độ điểm B theo tham số b Tam giác AIB vuông I, suy từ tìm toạ độ điểm B Bước Trình bày lời giải tốn theo sơ đồ bước Ta có , mà suy tam giác ADC vuông cân tai D nên DA = DC mặt khác IA = IC ID trung trực AC Đường thẳng AC qua M có véc tơ pháp tuyến nên có phương trình x – 2y + = Gọi , DA = Do Đường thẳng DB qua D vng góc với AD nên có phương trình TIEU LUAN MOI download : skknchat123@gmail.com Tam giác IAB vuông I nên suy B(2;-2) Vậy A(1;5), B(2; -2) Ví dụ Cho tam giác ABC nhọn Đường thẳng chứa đường trung tuyến kẻ từ A đường thẳng BC có phương trình , Đường thẳng qua A vng góc với đường thẳng BC cắt đường trịn ngoại tiếp tam giác ABC điểm thứ hai D(4; -2) Viết phương trình đường thẳng AB, AC biết A E H C B M D Bước Vẽ hình phẳng biểu thị cho toán, khai thác yếu tố hình phẳng sau: Tứ giác CEHK nội tiếp đường trịn Mà (góc nội tiếp chắn cung ) suy , tam giác BHD cân B, mà BK đường cao nên K trung điểm HD Bước Lập sơ đồ bước giải toán +) suy toạ độ điểm M +) Viết phương trình AD: qua D vng góc với BC TIEU LUAN MOI download : skknchat123@gmail.com +) suy toạ độ điểm A, suy toạ độ K +) K trung điểm DH suy toạ độ điểm H +) nên biểu thị toạ độ điểm B theo tham số t, M trung điểm BC suy toạ độ điểm C theo tham số t +) H trực tâm tam giác ABC nên suy toạ độ B, C Bước Trình bày lời giải tốn theo sơ đồ bước Ta có Đường thẳng AD qua D vng góc với BC nên có pt Tứ giác CEHK nội tiếp đường trịn Mà (góc nội tiếp chắn cung ) suy , tam giác BHD cân B, mà BK đường cao nên K trung điểm HD , M trung điểm BC suy H trực tâm tam giác ABC nên suy t = t = (loại) Khi B(2; -2), C(5; 1) Pt (AB): 3x + y – 4=0; pt(AC): y – = Ví dụ Cho hình vng ABCD có hai điểm M, N trung điểm AB, BC, biết CM cắt DN đường thẳng AH cắt CD Gọi H trung điểm DI, biết Biết , tìm toạ độ đỉnh hình vng TIEU LUAN MOI download : skknchat123@gmail.com M A B I E N H D P C Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Ta có Tứ giác AMID nội tiếp đường trịn tâm E( với E trung điểm AH) suy ED = EI, mà H trung điểm DI mà , suy CM // AH, mặt khác AM // CP nên tứ giác AMCP hình bình hành, P trung điểm DC nhật tứ giác AMPD hình chữ vng I Ta có cân A ( tam giác DIC vuông I) Bước Lập sơ đồ bước giải toán +) Chứng minh tam giác AIP vuông I +) Viết phương trình đường thẳng AI: qua I vng góc với PI +) Chứng minh AI = IP, biểu thị toạ độ điểm A theo tham số t AI = 2IP suy toạ độ điểm A, viết phương trình AP TIEU LUAN MOI download : skknchat123@gmail.com +) Viết phương trình DN: qua I vng góc với AP, suy toạ độ điểm , H trung điểm ID suy toạ độ điểm D +) Viết phương trình DC: qua D vng góc với AD, suy toạ độ điểm , P trung điểm DC suy toạ độ điểm C +) suy toạ độ điểm B Bước Trình bày lời giải toán theo sơ đồ bước Tứ giác AMID nội tiếp đường tròn tâm E( với E trung điểm AH) suy ED = EI, mà H trung điểm DI mà , suy CM // AH, mặt khác AM // CP nên tứ giác AMCP hình bình hành, P trung điểm DC nhật tứ giác AMPD hình chữ vng I Ta có cân A ( tam giác DIC vuông I) Đường thẳng AI qua I vng góc với PI nên có phương trình Do nên A(2; 4) suy pt(AP): suy pt(DN): x – 2y = Vậy TIEU LUAN MOI download : skknchat123@gmail.com Bước Trình bày lời giải toán theo sơ đồ bước MN đường trung bình tam giác HAB Do MNCK hình bình hành suy K trung điểm CD Ta có nên N trực tâm tam giác BCM , mà MK // CN Viết phương trình BM qua M và vng góc với MK, suy toạ độ Do nên C(9; 4) K trung điểm CD suy D(9;0) Vậy A(1; 0), B(1; 4), C(9; 4), D(9; 0) Ví dụ Cho hình chữ nhật ABCD có D(4; 5), M trung điểm đoạn AD, đường thẳng CM có phương trình thẳng Điểm B nằm đường Tìm toạ độ A, B, C A B I K M G D H C TIEU LUAN MOI download : skknchat123@gmail.com Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Ta có G trọng tâm tam giác ADC Gọi H, K hình chiếu B, D lên CM Bước Lập sơ đồ bước giải toán +) Chứng minh +) Tính d(D, CM) suy độ dài BH +) Biểu thị toạ độ điểm B theo tham số b toạ độ điểm B +) C thuộc CM nên biểu thị toạ độ điểm C theo tham số c suy toạ độ điểm C +) toạ độ điểm A Bước Trình bày lời giải tốn theo sơ đồ bước Ta có G ọi G trọng tâm tam giác ADC Gọi H, K hình chiếu B, D lên CM B(b; -1-2b) Vì B, D nằm khác phía CM nên b = (c < 2) TIEU LUAN MOI download : skknchat123@gmail.com Có Do c < nên C(-2; 1), A(8; -1) Vậy Ví dụ Cho hình bình hành ABCD có N trung điểm CD, đường thẳng BN có phương trình , điểm M(-1; 2) thuộc đoạn thẳng AC cho AC = AM Gọi H điểm đối xứng với N qua C, H thuộc đường thẳng Biết 3AC = 2AB, tìm toạ độ A, B, C, D A B M I G H D N C H Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Gọi suy G trọng tâm tâm tam giác BCD , mà Do TIEU LUAN MOI download : skknchat123@gmail.com Ta có suy tam giác MNH vuông M Bước Lập sơ đồ bước giải tốn +) Tính d(M,BN) Chứng minh +) Biểu thị toạ độ điểm H theo tham số a toạ độ điểm H +) Tam giác MNH vuông M suy phương trình đường thẳng MN +) toạ độ điểm N; C trung điểm NH suy toạ độ C +) N trung điểm CD suy toạ độ điểm D +) toạ độ điểm A, I, B Bước Trình bày lời giải toán theo sơ đồ bước Gọi suy G trọng tâm tâm tam giác BCD , mà Do Ta có suy tam giác MNH vng M Ta có TIEU LUAN MOI download : skknchat123@gmail.com Vì H, M nằm khác phía BN nên H(3; 2) Suy pt(MN): x + = Do Vây , Ví dụ Cho hình bình hành ABCD có Gọi hình chiếu vng góc điểm D lên AB, BC M(-2; -1), N(2; -1) Biết AC nằm đường thẳng có phương trình Tìm toạ độ A C Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Gọi I trung điểm BD thuộc trung trực MN Bước Lập sơ đồ bước giải toán +) Chứng minh I thuộc trung trực MN +) Viết phương trình đường trung trực MN, suy toạ độ điểm I, suy độ dài IM, BD, AC +) Viết phương trình đường trịn đường kính AC, suy toạ độ A, C giao điểm AC đường tròn đường kính AC Bước Trình bày lời giải toán theo sơ đồ bước Gọi I trung điểm BD Trung trực MN có phương trình x = thuộc trung trực MN Do TIEU LUAN MOI download : skknchat123@gmail.com Phương trình đường trịn đường kính AC Toạ độ A, C nghiệm hệ Do Ví dụ Cho hình thang cân ABCD có hai đáy AD BC, biết AB = BC, AD = Đường chéo AC có phương trình , điểm M(-2; -5) thuộc đường thẳng AD Viết phương trình CD biết B(1; 1) B C F A D M Bước Vẽ hình phẳng biểu thị cho tốn, khai thác yếu tố hình phẳng sau: Tứ giác ABCD hình thang cân nên ABCD nội tiếp đường tròn Mà AB = BC = CD nên AC đường phân giác góc Gọi E điểm đối xứng B qua AC suy E thuộc AD TIEU LUAN MOI download : skknchat123@gmail.com Bước Lập sơ đồ bước giải tốn +) Chứng minh AC phân giác góc +) Gọi E điểm đối xứng B qua AC suy E thuộc AD Viết phương trình BE, suy toạ độ điểm , F trung điểm BE suy toạ độ điểm E +) Viết phương trình AD qua E M, suy toạ độ +) toạ độ điểm D biểu thị theo tham số, AD = suy toạ độ D +) Viết phương trình BC qua B song song AD, suy toạ độ Bước Trình bày lời giải toán theo sơ đồ bước Tứ giác ABCD hình thang cân nên ABCD nội tiếp đường tròn Mà AB = BC = CD nên AC đường phân giác góc Gọi E điểm đối xứng B qua AC suy E thuộc AD Ta có pt(BE): Pt(AD): Ta có D thuộc AD nên Do B, D nằm hai phía AD nên phương trình 3x - 4y + = AD = suy Vì BC // AD nên BC có suy ABCD khơng phải hình thang cân, mâu thuẫn với giả thiết Vậy tốn vơ nghiệm TIEU LUAN MOI download : skknchat123@gmail.com Ví dụ 10 Cho hình thang cân ABCD với CD = 2AB Đường thẳng AC, BD có phương trình Biết toạ độ đỉnh A, B dương diện tích hình thang 36, tìm toạ độ đỉnh hình thang A B I D H K C Bước Vẽ hình phẳng biểu thị cho toán, khai thác yếu tố hình phẳng sau: Ta có vng cân I nên AHC vuông cân H , suy tam giác Bước Lập sơ đồ bước giải tốn +) Tính +) +) suy toạ độ điểm I Biểu thị toạ độ điểm A theo tham số a Biểu thị toạ độ điểm B theo tham số b TIEU LUAN MOI download : skknchat123@gmail.com +) Ta có +) suy toạ độ hai điểm A, B Biểu thị toạ độ điểm C theo tham số c nên toạ độ điểm D biểu thị theo tham số c Ta có IC = ID suy toạ độ C, D Bước Trình bày lời giải tốn theo sơ đồ bước Ta có vng cân I nên AHC vng cân H Ta có , suy tam giác suy toạ độ điểm I(3; 1) Gọi A(a; 4-a), B(b; 2- b) Ta có Do suy toạ độ hai điểm A(1; 3), B(5; 3) C(c; 4-c ) Mà Ta có IC = ID suy toạ độ C(7; -3), D(-1; -3) Vậy A(1; 3), B(5; 3), C(7; -3), D(-1; -3) IV Bµi häc kinh nghiệm: - Trớc toán, ngời thày phải biết hớng dẫn học sinh tự giải, biết tìm hớng đắn Bởi số toán đòi hỏi phải sáng tạo, đòi hỏi phải có t định mói giải đợc - Biết trân trọng thành lao động sáng tạo nhà to¸n häc, gióp häc sinh høng thó häc tËp bé môn nhằm TIEU LUAN MOI download : skknchat123@gmail.com nâng cao chất lợng môn toỏn chất lợng giáo dục - Bản thân tự cảm thấy đề tài nhiều hạn chế Do mong ngời đọc hÃy đóng góp ý kiến xây đựng đề tài, để đề tài ngày hoàn thiện - Hiện đa số thầy cô giáo đà biết phơng pháp Tuy nhiên ứng dụng cha đợc nghiên cứu cách tổng thể Do mong kinh nghiệm nhỏ nhoi giúp ích đợc phần cho công tác giảng dạy trờng phổ th«ng hiƯn Lạng giang , ngày 25 tháng năm 2015 Ngêi viÕt s¸ng kiÕn TIEU LUAN MOI download : skknchat123@gmail.com Nhận xét tổ chuyên môn NhËn xét HĐKH Nhà trờng NhËn xÐt cđa H§KH Sở giáo dục - đào tạo TIEU LUAN MOI download : skknchat123@gmail.com tØnh Danh Mục sách tham khảo STT Tên sách Tác giả Tuyển tập : 30 năm, năm TH&TT, chuyên đề TH&TT, báo TH&TT hàng tháng Các đề thi HSG toàn quốc Các đề thi Olimpic 30/4 Các đề tuyển sinh vào lớp 10 hệ chuyên toàn quốc TIEU LUAN MOI download : skknchat123@gmail.com Sở giáo dục - đào tạo tỉnh Bắc Giang Trêng THPT L¹ng giang sè - - ! sáng kiến kinh nghiệm Tên đề tài: KHAI THÁC YẾU TỐ HÌNH ĐỂ GIẢI MỘT SỐ BÀI TỐN HÌNH PHẲNG OXY” {{{{{{ TIEU LUAN MOI download : skknchat123@gmail.com Giáo viên thực : Đặng Khắc Quang Tổ : Toán Trờng : THPT Lạng Giang số Năm học 2014 – 2015 MỤC LỤC Trang A Mở đầu I Lý chọn đề tài II Cơ sở lý luận đề tài B Nội dung I Các giải pháp thực II Các biện pháp tổ chức thực III Một số ví dụ điển hình IV Bài học kinh nghiệm 23 TIEU LUAN MOI download : skknchat123@gmail.com TIEU LUAN MOI download : skknchat123@gmail.com ... hình học phẳng Qua giúp học sinh nhận thức rằng: ? ?Mỗi tốn hình học toạ độ mặt phẳng chứa đựng tốn hình phẳng tương ứng? ?? Vì phân tích chất tốn hình học phẳng để bổ trợ cho việc giải tốn hình học. .. thói quen xem xét tốn hình học toạ độ mặt phẳng theo chất hình học phẳng Và song song với lời giải cho tốn hình học toạ độ mặt phẳng, yêu cầu học sinh chất tốn hình phẳng tương ứng, từ phân tích... trưng cho loại toán Trong buổi học nghiên cứu phương pháp tư giải toán: "phân tích chất hình học phẳng tốn hình học toạ độ tương ứng" Trước hết ta cần ý chuyển toán toạ độ toán hình phẳng sở kiện