Tài liệu tham khảo |
Loại |
Chi tiết |
[4] T.-Y. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie. Feature pyramid networks for object detection. arXiv:1612.03144, 2017 |
Sách, tạp chí |
Tiêu đề: |
arXiv:1612.03144 |
|
[16] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.Computer Vision and Pattern Recognition, 1:511–518, 2001 |
Sách, tạp chí |
Tiêu đề: |
Computer Vision and Pattern Recognition |
|
[18] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, 1:886–893, 2005 |
Sách, tạp chí |
Tiêu đề: |
ComputerVision and Pattern Recognition |
|
[19] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object detection with deformable part models. Computer Vision and Pattern Recognition, page 2241–2248, 2010 |
Sách, tạp chí |
Tiêu đề: |
Computer Vision and Pattern Recognition |
|
[20] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detec- tion and beyond. International Conference on Computer Vision, page 89–96, 2011 |
Sách, tạp chí |
Tiêu đề: |
International Conference on Computer Vision |
|
[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con- volutional neural networks. Advances in neural information processing systems, page 1097–1105, 2012 |
Sách, tạp chí |
Tiêu đề: |
Advances in neural information processing systems |
|
[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffne. Gradient-based learning applied to docu- ment recognition. Proceedings of the IEEE, pages 2278–2324, 1998 |
Sách, tạp chí |
Tiêu đề: |
Proceedings of the IEEE |
|
[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu- tional neural networks. Advances in Neural Information Processing Systems, 2012 |
Sách, tạp chí |
Tiêu đề: |
Advances in Neural Information Processing Systems |
|
[24] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014 |
Sách, tạp chí |
|
[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409.4842, 2014 |
Sách, tạp chí |
|
[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015 |
Sách, tạp chí |
Tiêu đề: |
arXiv:1512.00567 |
|
[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. Com- puter Vision and Pattern Recognition, 2016 |
Sách, tạp chí |
Tiêu đề: |
Com-puter Vision and Pattern Recognition |
|
[1] Raimi Karim. Illustrated: 10 cnn architectures. https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d, 2019. Accessed: 2020.12.06 |
Link |
|
[5] Jonathan Hui. Understanding feature pyramid networks for ob-ject detection (fpn). https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c,2018. Accessed: 2020.12.06 |
Link |
|
[6] FARHAD MANJOO. Chinook, the unbeatable checkers-playing computer. https://www.salon.com/2007/07/19/checkers/, 2007. Accessed: 2021.06.10 |
Link |
|
[7] CHESScom. Kasparov vs. deep blue, the match that changed history. https://www.chess.com/article/view/deep-blue-kasparov-chess, 2018. Accessed:2021.06.11 |
Link |
|
[8] SOUTH BRUNSWICK. Computer beats champion again, this time in othello. https://apnews.com/article/cfb65936e48e403e5a87ad30c8a063ec, 1997. Accessed:2021.06.11 |
Link |
|
[15] University of Nantes. Ohfcd dataset. http://tc11.cvc.uab.es/datasets/OHFCD_1.Accessed: 2020.12.06 |
Link |
|
[59] Czech Technical Univer-sity. Fcdatabase. https://cmp.felk.cvut.cz/~breslmar/flowcharts/. Accessed: 2020.12.06 |
Link |
|
[60] Tokyo University of Agriculture Nakagawa lab and Technology. Kondate dataset. http://web.tuat.ac.jp/~nakagawa/database/en/kondate_proc.html.Accessed: 2020.12.06 |
Link |
|