THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 473 |
Dung lượng | 11,33 MB |
Nội dung
Ngày đăng: 27/05/2022, 08:57
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
1. Airault, H., Bouali, A.: Differential calculus on the Faber polynomials. Bulletin des Sciences Mathematiques. 130, no 3, 179–222 (2006) | Khác | |
2. Airault, H., Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions. Bulletin des Sciences Mathematiques. 126, no 5, 343–367 (2002) 3. Altinkaya, S., Yalcin, S.: Faber polynomial coefficient bounds for a subclass of bi-univalentfunctions. Comptes Rendus Mathematique. 353, no 12, 1075–1080 (2015) | Khác | |
4. Bouali, A.: Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions.Bulletin des Sciences Mathematiques. 130, no 1, 49–70 (2006) | Khác | |
5. Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica. 31, no 2, 70–77 (1986) | Khác | |
6. Ça˘glar, M., Orhan, H., Ya˘gmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat. 27, 1165–1171 (2013) | Khác | |
7. Duren, P.L.: Coefficients of meromorphic schlicht functions. Proceedings of the American Mathematical Society. 28, 169–172 (1971) | Khác | |
8. Duren, P.L.: Univalent functions. Springer Science and Business Media. 259, (2001) 9. Faber, G.: About polynomial evolutions. Mathematische Annalen. 57, no 3, 389–408 (1903) 10. Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Coefficient estimates for a class of meromorphicbi-univalent functions. Comptes Rendus Mathematique. 351, no 9, 349–352 (2013) | Khác | |
11. Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Faber Polynomial Coefficient Estimates for Meromorphic Bi-Starlike Functions. International Journal of Mathematics and Mathematical Sciences. 2013, 1–4 (2013) | Khác | |
12. Hamidi, S.G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.M.: Coefficient estimates for certain classes of meromorphic bi-univalent functions. Comptes Rendus Mathematique. 352, no 4, 277–282 (2014) | Khác | |
13. Hussain, S., Khan, S., Zaighum, M.A., Darus, M., Shareef, Z.: Coefficients bounds for certain subclass of biunivalent functions associated with Ruscheweyh-Differential operator. Journal of Complex Analysis. article no 2826514 (2017) | Khác | |
14. Janani, T., Murugusundaramoorthy, G.: Inclusion results on subclasses of Starlike and Convex functions associated with Struve functions. Italian Journal of Pure and Applied Mathematics.32, 467–476 (2014) | Khác | |
15. Khan, S., Khan, N., Hussain, S., Ahmad, Q.Z., Zaighum, M.A.: Some subclasses of bi-univalent functions associated with srivastava-attiya operator. Bulletin of Mathematical Analysis and Applications. 9, no 2, 37–44 (2017) | Khác | |
16. Lewin, M.: On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society. 18, 63–68 (1967) | Khác | |
17. Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in | z | < 1. Archive for Rational Mechanics and Analysis.32, 100–112 (1969) | Khác | |
18. Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters. 23, 1188–1192 (2010) | Khác | |
19. Srivastava, H.M., Bulut, S., Ça˘glar, M., Ya˘gmur, N.: Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat. 27, 831–842 (2013) | Khác | |
20. Taha, T.S.: Topics in Univalent Function Theory. Ph.D. Thesis. University of London (1981) 21. Todorov, P.G.: On the Faber polynomials of the univalent functions of class. Journal ofMathematical Analysis and Applications. 162, no 1, 268–276 (1991) | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN