1. Trang chủ
  2. » Khoa Học Tự Nhiên

Ocean atmosphere interactions of gases and particles

366 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Preface

  • Acknowledgments

  • COST – European Cooperation in Science and Technology

  • Contents

  • Contributors

  • Lead Authors

  • Contributing Authors

  • 1 Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    • 1.1 Introduction

    • 1.2 Sulphur and Related Gases

      • 1.2.1 DMS(P) in the Surface Ocean

        • 1.2.1.1 Ecosystem Dynamics

        • 1.2.1.2 DMS Yield

        • 1.2.1.3 Predicted Impact of Climate Change

      • 1.2.2 Other Sulphur and Related Gases in the Surface Ocean

        • 1.2.2.1 Carbonyl Sulphide

        • 1.2.2.2 Carbon Disulphide

        • 1.2.2.3 Hydrogen Sulphide

        • 1.2.2.4 Methanethiol

        • 1.2.2.5 Dimethyl Selenide

      • 1.2.3 Atmospheric Sulphur and Related Gases

        • 1.2.3.1 Chemistry of Sulphur in the Marine Boundary Layer (MBL)

        • 1.2.3.2 CLAW Hypothesis

    • 1.3 Halocarbon Gases

      • 1.3.1 Chlorinated Compounds

        • 1.3.1.1 Introduction

        • 1.3.1.2 Methyl Chloride

        • 1.3.1.3 Dichloromethane

        • 1.3.1.4 Tri- and Tetrachloroethylene

        • 1.3.1.5 Chloroform

      • 1.3.2 Brominated Compounds

        • 1.3.2.1 Methyl Bromide

        • 1.3.2.2 CHBr3, CH2Br2 and Other Polybrominated Methanes

      • 1.3.3 Iodinated Compounds

        • 1.3.3.1 Iodomethane

        • 1.3.3.2 Other Mono-Iodinated Iodocarbons

        • 1.3.3.3 Di- and Tri-Halogenated Compounds

      • 1.3.4 Halogens in the Marine Atmospheric Boundary Layer

    • 1.4 Non-Methane Hydrocarbons (NMHCs)

      • 1.4.1 Oxygenated Volatile Organic Compounds (OVOCs)

        • 1.4.1.1 Atmospheric Importance of OVOCs

        • 1.4.1.2 Atmospheric Budget

        • 1.4.1.3 Surface Ocean Processes

      • 1.4.2 Alkanes and Alkenes

      • 1.4.3 Alkyl Nitrates

      • 1.4.4 Hydrogen Cyanide (HCN) and Methyl Cyanide (CH3CN)

    • 1.5 Ozone

    • 1.6 Nitric Oxide

    • 1.7 Ammonia and Amines

      • 1.7.1 Ammonia

      • 1.7.2 Amines

    • 1.8 Hydrogen

    • 1.9 Carbon Monoxide

    • 1.10 Concluding Remarks

    • References

  • 2 Transfer Across the Air-Sea Interface

    • 2.1 Introduction

    • 2.2 Processes

      • 2.2.1 Microscale Wave Breaking

      • 2.2.2 Small Scale Turbulence

      • 2.2.3 Bubbles, Sea Spray

      • 2.2.4 Wind-Generated Waves

      • 2.2.5 Large-Scale Turbulence

      • 2.2.6 Rain

      • 2.2.7 Surface Films

      • 2.2.8 Biological and Chemical Enhancement

      • 2.2.9 Atmospheric Processes

    • 2.3 Process Models

      • 2.3.1 Interfacial Models

        • 2.3.1.1 Thin (Stagnant) Film Model

        • 2.3.1.2 Surface Renewal Model

        • 2.3.1.3 Eddy Renewal Model

        • 2.3.1.4 Surface Penetration

        • 2.3.1.5 Air-Side Transfer

      • 2.3.2 Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES)

    • 2.4 Exchanged Quantities

      • 2.4.1 Physical Quantities

      • 2.4.2 Gases

      • 2.4.3 Particles

        • 2.4.3.1 Dry Deposition

        • 2.4.3.2 Wet Deposition

    • 2.5 Measurement Techniques

      • 2.5.1 Small-Scale Measurements Techniques

        • 2.5.1.1 Particle-Based Techniques

        • 2.5.1.2 Thermographic Techniques

      • 2.5.2 Micrometeorological Techniques

      • 2.5.3 Mass Balance

        • 2.5.3.1 Techniques

        • 2.5.3.2 Scales (Spatial and Temporal)

        • 2.5.3.3 Accuracy and Limitations

        • 2.5.3.4 Current and Recent Field Studies

      • 2.5.4 Profiles of pCO2 Near the Surface

      • 2.5.5 Method Evaluation

    • 2.6 Parameterization of Gas Exchange

      • 2.6.1 Wind Speed Relationships

      • 2.6.2 Surface Roughness, Slope

      • 2.6.3 NOAA-COARE

      • 2.6.4 Energy Dissipation

      • 2.6.5 Evaluating and Selecting Transfer Velocity Parameterisations

    • 2.7 Sea Ice

    • 2.8 Applications of Air-Sea Gas Transfer

      • 2.8.1 Models

      • 2.8.2 Remote Sensing

      • 2.8.3 Inventories, Climatologies Using In Situ Data

    • 2.9 Summary

    • References

  • 3 Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate

    • 3.1 Introduction

      • 3.1.1 Atmospheric Greenhouse Gases from Ice Cores

    • 3.2 Surface Ocean Distribution and Air-Sea Exchange of CO2

      • 3.2.1 Global Tropospheric CO2 Budget

      • 3.2.2 Processes Controlling CO2 Dynamics in the Upper Water Column

      • 3.2.3 Surface Ocean fCO2 and Air-Sea CO2 Fluxes in the Open Ocean

        • 3.2.3.1 Surface Ocean fCO2 Distribution

        • 3.2.3.2 Multi-Year Changes and Trends

        • 3.2.3.3 Comparison of Air-Sea CO2 Flux Estimates

        • 3.2.3.4 Sea Ice

        • 3.2.3.5 Coastal to Open Ocean Carbon Exchanges

      • 3.2.4 Air-Sea CO2 Fluxes in Coastal Areas

        • 3.2.4.1 Continental Shelves

        • 3.2.4.2 Near-Shore Systems

        • 3.2.4.3 Multi-Year Changes and Trends

    • 3.3 Marine Distribution and Air-Sea Exchange of N2O

      • 3.3.1 Global Tropospheric N2O Budget

      • 3.3.2 Nitrous Oxide Formation Processes

        • 3.3.2.1 Denitrification

        • 3.3.2.2 Nitrification

        • 3.3.2.3 N2O Formation by Dissimilatory Nitrate Reduction to Ammonium

      • 3.3.3 Global Oceanic Distribution of Nitrous Oxide

      • 3.3.4 Coastal Distribution of Nitrous Oxide

      • 3.3.5 Marine Emissions of Nitrous Oxide

    • 3.4 Marine Distribution and Air-Sea Exchange of CH4

      • 3.4.1 Global Tropospheric CH4 Budget

      • 3.4.2 Formation and Removal Processes for Methane

      • 3.4.3 Global Oceanic Distribution of Methane

      • 3.4.4 Coastal Distribution of Methane

        • 3.4.4.1 Coastal Sediments

        • 3.4.4.2 Coastal Waters

        • 3.4.4.3 Methane Hydrates

      • 3.4.5 Marine Emissions of Methane

    • 3.5 Impact of Global Change

      • 3.5.1 Future Changes in the Physics of the Oceanic Surface Layer

        • 3.5.1.1 Carbon Dioxide in the Open Ocean

        • 3.5.1.2 Carbon Dioxide in Coastal Seas

        • 3.5.1.3 Nitrous Oxide and Methane

      • 3.5.2 Ocean Acidification

        • 3.5.2.1 Carbon Dioxide

        • 3.5.2.2 Nitrous Oxide and Methane

      • 3.5.3 Deoxygenation and Suboxia in the Open Ocean

      • 3.5.4 Coastal Euthrophication and Hypoxia

      • 3.5.5 Changes in Methane Hydrates

    • 3.6 Key Uncertainties in the Air-Sea Transfer of CO2, N2O and CH4

      • 3.6.1 Outgassing of Riverine Carbon Inputs

      • 3.6.2 Heterogeneity in Coastal Systems

      • 3.6.3 Sea Ice

      • 3.6.4 Parameterising Air-Sea Gas Transfer

      • 3.6.5 Data Collection, Data Quality and Data Synthesis

    • 3.7 Conclusions and Outlook

      • 3.7.1 Carbon Dioxide

      • 3.7.2 Nitrous Oxide and Methane

    • References

  • 4 Ocean-Atmosphere Interactions of Particles

    • 4.1 Introduction

    • 4.2 Aerosol Production and Transport in the Marine Atmosphere

      • 4.2.1 Sources of Aerosol in the Marine Atmosphere

        • 4.2.1.1 Sea Spray Aerosol Production

        • 4.2.1.2 Organic Enrichment of Particulate Organic Matter in Sea Spray Aerosol

          • Laboratory Studies

          • Global Distribution of Organic Enrichment

        • 4.2.1.3 Secondary Aerosol Formation in the Marine Atmospheric Boundary Layer

          • Secondary Inorganic Aerosol Formation

          • Secondary Organic Marine Aerosol

          • New Particle Formation in the Marine Boundary Layer?

      • 4.2.2 Non-Marine Sources

        • 4.2.2.1 Desert Dust

        • 4.2.2.2 Volcanic Gases, Aerosols and Ash

        • 4.2.2.3 Global Emissions of Biogenic Volatile Organis Compounds (BVOC´s) from Terrestrial Ecosystems

        • 4.2.2.4 Anthropogenic Emissions

          • Anthropogenic Land-Based Emissions

          • Uncertainty in Global Anthropogenic Emissions

          • Global Biomass Burning Emissions

          • International Shipping Emissions

          • Comparison and Evaluation of Different Emission Datasets

      • 4.2.3 Ageing and Mixing of Aerosols During Transport

        • 4.2.3.1 Chemical Ageing of Organic Aerosols

        • 4.2.3.2 Internal Mixing

          • Dust/Inorganic Species

          • Dust/Organic Species

          • Sea Salt

          • Future Directions

      • 4.2.4 Dust-Mediated Transport of Living Organisms and Pollutants

    • 4.3 Direct Radiative Effects (DRE)

    • 4.4 Effects on Cloud Formation and Indirect Radiative Effects

    • 4.5 Deposition of Aerosol Particles to the Ocean Surface and Impacts

      • 4.5.1 Deposition

        • 4.5.1.1 Iron

        • 4.5.1.2 Phosphorus

        • 4.5.1.3 Nitrogen

        • 4.5.1.4 Deposition of Other Species

      • 4.5.2 Elements of Biogeochemical Interest and Their Chemical Forms

      • 4.5.3 Dissolution- Scavenging Processes

      • 4.5.4 Atmospheric Impacts in HNLC and LNLC Areas

        • 4.5.4.1 Experimental: Large Scale Fertilisation Experiments (Fe, P)

        • 4.5.4.2 Experimental: Microcosms

          • Main Results Obtained from the Microcosm Approach

        • 4.5.4.3 Experimental: In Situ Mesocosms

        • 4.5.4.4 Modelling

      • 4.5.5 Particulate Matter and Carbon Export

    • 4.6 Summary and Outlook

    • References

  • 5 Perspectives and Integration in SOLAS Science

    • 5.1 Perspectives: In Situ Observations, Remote Sensing, Modelling and Synthesis

      • 5.1.1 In Situ Observations

        • 5.1.1.1 ARGO (T, S, O2)

        • 5.1.1.2 Ocean Observatories

        • 5.1.1.3 Atmospheric Observatories

        • 5.1.1.4 Monitoring Reactive Trace Species in the Marine Atmosphere: Highlights from the Cape Verde Observatory

        • 5.1.1.5 Conclusions

      • 5.1.2 Earth Observation Products

        • 5.1.2.1 Altimetry, SST, Winds, Sea State

        • 5.1.2.2 Sea Surface Salinity

        • 5.1.2.3 Marine Carbon Observations from Satellite Data: Ocean Color/PIC/POC

        • 5.1.2.4 Sea Ice

        • 5.1.2.5 Aerosols

        • 5.1.2.6 Satellite Measurements of Trace Gases Over the Oceans

        • 5.1.2.7 Conclusions

      • 5.1.3 Modelling

        • 5.1.3.1 Global Perspective, Prognostic IPCC and Hindcast

        • 5.1.3.2 Regional Perspectives from High-Resolution Modeling

        • 5.1.3.3 Inverse Modelling

        • 5.1.3.4 Conclusions

      • 5.1.4 SOLAS/COST Data Synthesis Efforts

        • 5.1.4.1 MEMENTO (MarinE MethanE and NiTrous Oxide) Database

        • 5.1.4.2 HalOcAt (Halocarbons in the Ocean and Atmosphere)

        • 5.1.4.3 DMS-GO (DMS in the Global Ocean)

        • 5.1.4.4 The Surface Ocean CO2 ATlas (SOCAT)

        • 5.1.4.5 Aerosol and Rainwater Chemistry Database

        • 5.1.4.6 A Data Compilation of Iron Addition Experiments

        • 5.1.4.7 Conclusions

    • 5.2 Examples of SOLAS Integrative Studies

      • 5.2.1 DMS Ocean Climatology and DMS Marine Modelling

        • 5.2.1.1 Global Climatologies Based on Observations

        • 5.2.1.2 Diagnostic Approaches: Based on Empirical Correlations

        • 5.2.1.3 Prognostic Modelling: From 1D to 3D

        • 5.2.1.4 Examples of Applications

          • Climate Change

          • Iron Fertilisation

      • 5.2.2 North Pacific Volcanic Ash and Ecosystem Response

      • 5.2.3 CO2 in the North Atlantic

      • 5.2.4 Global Distribution of Sea Salt Aerosols

    • 5.3 Perspectives for the Future

    • References

  • Index

Nội dung

Ngày đăng: 10/05/2022, 14:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w