1. Trang chủ
  2. » Thể loại khác

dap-an-hsg-lop-11-2017-th-hung-vuong-toan-hoc

4 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 441,5 KB

Nội dung

1 HƯỚNG DẪN CHẤM THI OLYMPIC TRẠI HÈ HÙNG VƯƠNG LẦN THỨ XIII MÔN TOÁN 11 (Hướng dẫn này có 04 trang) Câu 1 (4,0 điểm) Cho dãy số ( ) n u xác định bởi 1 2u  và 2 1 ( 1) 1 n n n n u u nu     với mọ[.]

HƯỚNG DẪN CHẤM THI OLYMPIC TRẠI HÈ HÙNG VƯƠNG LẦN THỨ XIII MƠN TỐN 11 (Hướng dẫn có 04 trang) Câu (4,0 điểm) Cho dãy số (un ) xác định bởi: u1  (n  1)un 1un  nun2  với số nguyên dương n a) Chứng minh rằng: 1  L   2018u2018  u1 u2 u2017 b) Tìm số thực c lớn cho un  c với số nguyên dương n (Dựa đề đề xuất THPT chuyên Lào Cai) Hướng dẫn chấm a) Từ giả thiết suy un  Do đó:  (n  1)un 1  nun , n  ¥ * (1) un 1     (2u2  u1 )   (2018u2018  2017u2017 )  2018u2018  u1 u2 u2017 Điểm 4,0 1,0 1,0 b) Ta chứng minh c  Trước hết ta chứng minh un  1, n  ¥ * (2) quy nạp Với n  1, hiển nhiên (2) Giả sử (2) với n  k (k  2) Khi đó: uk 1   Mặt khác: uk   1 (uk  1)  k   (a) k 1 uk   1,0 k 1 k 1 k uk 1  2    , k  (b) k kuk 1 k k uk  1 (uk  1)  k     uk 1  Vậy (2) k 1 uk   với n  k  Theo nguyên lí quy nạp (2) Từ (a), (b) giả thiết quy nạp ta uk 1   0,5 Vậy c  Từ uk 1    1 (uk  1)  k  k 1 uk   k 1 (uk  1) nên | un  1| (u1  1)     uk 1   n n k 1  0,5 Suy lim uk  Do c  Vậy c  (đpcm) Chú ý Nếu học sinh chứng minh lim uk  mà chưa chứng minh c  cho điểm ·  1200 ) , phía ngồi tam giác ABC dựng Câu (4,0 điểm) Cho tam giác ABC ( AB  AC BAC tam giác ABB ', ACC ' Gọi M , N , P, M ', N ', P ' theo thứ tự trung điểm đoạn thẳng BC, CA, AB, B ' C ', C ' A, AB ' Chứng minh rằng: a) Các tam giác MN ' P ', M ' NP tam giác b) MM ', NN ', PP ' đồng quy (Đề xuất Tổ đề) Điểm Hướng dẫn chấm 4,0 a) Xét hình vẽ (Học sinh dựa vào hình chứng minh cho điểm tối đa) Cách Xét phép quay véc tơ ngược chiều kim đồng hồ Ta có uuuur uuur uuuur uuur uuuur 1 uuur uuur uuuur Q 60 ( MN ')  Q 60 ( ( BA '  CC '))  ( Q 60 ( BA)  Q 60 (CC '))  ( BB '  CA)  MP ' 2 Suy tam giác MN ' P ' Tương tự, tam giác M ' NP C' N' A 2,0 M' P' B' N P Q B M C Cách Chứng minh tam giác P ' AN ', P ' PM MNN ' Suy tam giác MN ' P ' Tương tự, tam giác M ' NP 2,0 b) Vì BAC  1200 nên đường thẳng MM ', NN ', PP ' không song song · ·   Gọi Q giao điểm NN ', PP ' Đặt MPN · ANP  ; · APN  MNP Ta có điều kiện sau tương đương: 1) MM ', NN ', PP ' đồng quy 2) M , M ', Q thẳng hàng 3) P( NMM ' Q)  N ( PMM ' Q) 2,0 4) P( NMM ' P ')  N ( PMM ' N ') 5) · ' PN sin P ·' PN · ' NP sin N · ' NP sin M sin M :  : · ' PM sin P ·' PM sin M · ' NM sin N ·' NM sin M 6) sin 60 sin(60   ) sin 60 sin(60   ) :  : sin(60   ) sin(60     ) sin(60   ) sin(60     ) 7) sin(60   )sin(60   )  sin(60   )sin(60   ) (ln đúng) Câu (4,0 điểm) Tìm tất hàm số f : ¡  ¡ thoả mãn f ( x)  ( x  y ) f ( y ) với số thực x, y (Đề xuất Tổ đề) Điểm Hướng dẫn chấm 4,0 Theo giả thiết ta có f ( x)  ( x  y ) f ( y) với x, y Đổi vai trò x, y f ( y)   x  y  f ( x) Do f ( y )   x  y  f ( x)   x  y  f ( y ) 1,5 Cho x  f ( y)  (4  y )2 f ( y) Suy f ( y)  với y 1,0 Mặt khác x  y  ta f (0)  Vậy f (0)  0,5 Cho y  ta f ( x)  với x Vậy f  1,0 Câu (4,0 điểm) Cho dãy số nguyên ( xn ) xác định bởi: x0  , x1  xn   3xn 1  xn với số tự nhiên n a) Tìm số dư x2017 chia cho b) Chứng minh xn100  xn (mod 101) với số tự nhiên n (Đề đề xuất Tổ đề) Điểm Hướng dẫn chấm 4,0 a) Ta có xn  xn 3 (mod 4) Suy x2017  x1 (mod 4) , x2017  (mod 4) 1,0 b) Cách Ta x100  (mod101) x101  (mod101) Đầu tiên ta có n n  3   3          xn  Khai triển Newton cho ta: xn  n C k n n k 1,0 k 1 k  0, n Œk Ta có 452  (mod101) Suy xn  n C k n nk   45    45  n k 1 45 k 0, n Œk Hay xn  45 n  48n  (42)n (mod101) 45 1,5 24n  (21)n (mod101) 45 Áp dụng định lý Fermat nhỏ ta được: x100  (mod101) x101  (mod101) Do công thức 0,5 truy hồi, suy xn 100  xn (mod101) với số tự nhiên n Cách Học sinh xét tìm dãy số dư xn modulo 101 Danh sách số dư dãy chia cho 101 đây: 2,0 [0, 1, 3, 8, 21, 55, 43, 74, 78, 59, 99, 36, 9, 92, 65, 2, 42, 23, 27, 58, 46, 80, 93, 98, 100, 0, 1, 3, 8,….] Sau học sinh giải thích tính truy hồi nên dãy số dư tuần hoàn Suy đpcm 1,0 Chú ý Với cách 2, học sinh tìm vài số dư mà chưa đến số dư lặp (chu kỳ) khơng cho điểm Câu (4 điểm) Xét k số nguyên dương thỏa mãn tính chất: Tồn 2017 tập A1 ,, A2017 tập {0,1,,102017  1} (không thiết phân biệt) cho tập có k phần tử phần tử {0,1,,102017  1} biểu diễn dạng x1  L  x2017 xi  Ai với i  1,, 2017 Hãy xác định giá trị bé k (Đề đề xuất Tổ đề) Hướng dẫn chấm Ta kí hiệu A1  L  A2017 tập tất số có dạng x1  L  x2017 xi  Ai với i  1,, 2017 Ta có A1  L  A2017  k 2017 Thành thử k 2017  102017 hay k  10 Điểm 4,0 1,5 Ta 10 giá trị bé k Với số ngun khơng âm m ta viết m  as 10 s  L  a110  a0 , 1,5 s số tự nhiên a0 ,, as {0,1,,9} as  Với số m {0,1,,102017  1} s  2017 s  2017 m  as 10s  102017 , mâu thuẫn Với j  1,, 2017 ta đặt Aj  {10 j 1t : t  0,,9} Khi với m {0,1,,102017  1} , m  x1  L  x2017 , x j  10 j 1 a j 1, j  1,2, , s 1 x j  0, j  s  2, , 2017 -Hết Ghi chú: Học sinh làm theo nhiều cách khác Nếu giải cho điểm tối đa 1,0

Ngày đăng: 30/04/2022, 15:34

HÌNH ẢNH LIÊN QUAN

a) Xét thế hình như hình vẽ (Học sinh chỉ dựa vào thế hình chứng minh thì vẫn cho điểm tối đa)  - dap-an-hsg-lop-11-2017-th-hung-vuong-toan-hoc
a Xét thế hình như hình vẽ (Học sinh chỉ dựa vào thế hình chứng minh thì vẫn cho điểm tối đa) (Trang 2)

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN