ĐỀ 26
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ):
Câu I (3đ):
1. Khảo sát và vẽ đồ thị (C) của hàm số
3
1
+
=
+
x
y
x
2. CMR với mọi giá trị của m, đường thẳng (d) y = 2x + m luôn cắt (C) tại 2
điểm phân biệt.
3. Gọi A là giao điểm của (C) với trục Ox. Viết phương trình tiếp tuyến của (C)
tại A.
Câu II (3đ): 1. Giải phương trình:
3
2 log
3 81
−
=
x
x
1) Tìm giá trị lớn nhất và giá rị nhỏ nhất của hàm số: y = 2sin
2
x + 2sinx – 1
Câu III (1đ):
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA =
a, AB = b, AC = c và
·
0
90=BAC
. Tính diện tích mặt cầu và thể tích khối cầu ngoại
tiếp tứ diện SABC.
PHẦN RIÊNG (3đ):
1.Theo chương trình chuẩn:
Câu IV.a (2đ):
Trong không gian Oxyz. Cho điểm M(-3;1;2) và mặt phẳng (P) có phương
trình: 2x + 3y + z – 13 = 0
1) Hãy viết phương trình đường thẳng (d) đi qua M và vuông góc với mặt
phẳmg (P). Tìm tọa độ giao điểm H của đường thẳng (d) và mặt phẳng (P).
2) Hãy viết phương trình mặt cầu tâm M có bán kính R = 4. Chứng tỏ mặt cầu
này cắt mặt phẳng (P) theo giao tuyến là 1 đường tròn.
Câu V.a (1đ):
Tính diện tích hình phẳng giới hạn bởi các đường (P): y = 4 – x
2
, (d): y = -x + 2
2.Theo chương trình Nâng cao:
Câu IV.b (2đ):
Trong không gian Oxyz cho 4 điểm A(-2;1;2), B(0;4;1), C(5;1;-5), D(-2;8;-
5) và đường thẳng d:
5 11 9
3 5 4
+ + −
= =
−
x y z
.
1) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.
2) Tìm tọa độ giao điểm M, N của (d) với mặt cầu (S).
3) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M,N
Câu V.b (1đ): Tính diện tích hình phẳng giới han bởi các đường (P): y = x
2
+ 1,
tiếp tuyến của (P) tại M(2;5) và trục Oy
. ĐỀ 26
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ):
Câu I (3đ):
1. Khảo sát và vẽ đồ