Tài liệu tham khảo |
Loại |
Chi tiết |
[1] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A survey of approaches and applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017 |
Sách, tạp chí |
Tiêu đề: |
Knowledge graph embedding: A survey of approaches and applications |
Tác giả: |
Q. Wang, Z. Mao, B. Wang, L. Guo |
Nhà XB: |
IEEE Transactions on Knowledge and Data Engineering |
Năm: |
2017 |
|
[2] Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami, and C. Li, “A benchmarking study of embedding-based entity alignment for knowledge graphs,” Proc. VLDB Endow., vol. 13, no. 12, 2326–2340, 2020 |
Sách, tạp chí |
Tiêu đề: |
A benchmarking study of embedding-based entity alignment for knowledge graphs |
Tác giả: |
Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami, C. Li |
Nhà XB: |
Proc. VLDB Endow. |
Năm: |
2020 |
|
[3] A. Bordes, N. Usunier, A. Garcia-Dur´an, J. Weston, and O. Yakhnenko,“Translating embeddings for modeling multi-relational data,” in Proceed- ings of the 26th International Conference on Neural Information Process- ing Systems, 2013, pp. 2787–2795 |
Sách, tạp chí |
Tiêu đề: |
Translating embeddings for modeling multi-relational data |
Tác giả: |
A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, O. Yakhnenko |
Nhà XB: |
Proceedings of the 26th International Conference on Neural Information Processing Systems |
Năm: |
2013 |
|
[4] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2D Knowledge Graph Embeddings,” in AAAI, 2018, pp. 1811–1818 |
Sách, tạp chí |
Tiêu đề: |
Convolutional 2D Knowledge Graph Embeddings |
Tác giả: |
T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel |
Nhà XB: |
AAAI |
Năm: |
2018 |
|
[5] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph em- bedding by relational rotation in complex space,” in International Confer- ence on Learning Representations, 2019 |
Sách, tạp chí |
Tiêu đề: |
Rotate: Knowledge graph em-bedding by relational rotation in complex space |
|
[6] D. Q. Nguyen, D. Q. Nguyen, T. D. Nguyen, and D. Phung, “ Convolu- tional Neural Network-based Model for Knowledge Base Completion and Its Application to Search Personalization,” Semantic Web, vol. 10, no. 5, pp. 947–960, 2019 |
Sách, tạp chí |
Tiêu đề: |
Convolutional Neural Network-based Model for Knowledge Base Completion and Its Application to Search Personalization |
Tác giả: |
D. Q. Nguyen, D. Q. Nguyen, T. D. Nguyen, D. Phung |
Nhà XB: |
Semantic Web |
Năm: |
2019 |
|
[7] I. Balaˇzevi´c, C. Allen, and T. M. Hospedales, “Tucker: Tensor factoriza- tion for knowledge graph completion,” in Empirical Methods in Natural Language Processing, 2019, pp. 5185–5194 |
Sách, tạp chí |
Tiêu đề: |
Tucker: Tensor factorization for knowledge graph completion |
Tác giả: |
I. Balaˇzevi´c, C. Allen, T. M. Hospedales |
Nhà XB: |
Empirical Methods in Natural Language Processing |
Năm: |
2019 |
|
[8] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding Entities and Relations for Learning and Inference in Knowledge Bases,” in Proceedings of the International Conference on Learning Representations, 2015 |
Sách, tạp chí |
Tiêu đề: |
Embedding Entities and Relations for Learning and Inference in Knowledge Bases |
Tác giả: |
B. Yang, W.-t. Yih, X. He, J. Gao, L. Deng |
Nhà XB: |
Proceedings of the International Conference on Learning Representations |
Năm: |
2015 |
|
[9] T. Trouillon, J. Welbl, S. Riedel, ´ E. Gaussier, and G. Bouchard, “Complex Embeddings for Simple Link Prediction,” in ICML, 2016, pp. 2071–2080 |
Sách, tạp chí |
Tiêu đề: |
Complex Embeddings for Simple Link Prediction |
Tác giả: |
T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard |
Nhà XB: |
ICML |
Năm: |
2016 |
|
[10] M. Schlichtkrull, T. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling,“Modeling relational data with graph convolutional networks,” in ESWC, 2018, pp. 593–607 |
Sách, tạp chí |
Tiêu đề: |
Modeling relational data with graph convolutional networks |
|
[11] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, “End-to-end structure-aware convolutional networks for knowledge base completion,”in AAAI, vol. 33, 2019, pp. 3060–3067 |
Sách, tạp chí |
Tiêu đề: |
End-to-end structure-aware convolutional networks for knowledge base completion |
Tác giả: |
C. Shang, Y. Tang, J. Huang, J. Bi, X. He, B. Zhou |
Nhà XB: |
AAAI |
Năm: |
2019 |
|
[12] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based multi-relational graph convolutional networks,” in ICLR, 2020 |
Sách, tạp chí |
Tiêu đề: |
Composition-basedmulti-relational graph convolutional networks |
|
[13] T. Gracious, S. Gupta, A. Kanthali, R. M. Castro, and A. Dukkipati, “Neu- ral latent space model for dynamic networks and temporal knowledge graphs,”in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 4054–4062 |
Sách, tạp chí |
Tiêu đề: |
Neu- ral latent space model for dynamic networks and temporal knowledge graphs |
Tác giả: |
T. Gracious, S. Gupta, A. Kanthali, R. M. Castro, A. Dukkipati |
Nhà XB: |
Proceedings of the AAAI Conference on Artificial Intelligence |
Năm: |
2021 |
|
[14] H. T. Trung, T. Van Vinh, N. T. Tam, H. Yin, M. Weidlich, and N. Q. V.Hung, “Adaptive network alignment with unsupervised and multi-order convolutional networks,” in IEEE 36th International Conference on Data Engineering (ICDE), 2020, pp. 85–96 |
Sách, tạp chí |
Tiêu đề: |
Adaptive network alignment with unsupervised and multi-orderconvolutional networks |
|
[15] M. C. Phan, A. Sun, Y. Tay, J. Han, and C. Li, “Pair-linking for collective entity disambiguation: Two could be better than all,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 7, pp. 1383–1396, 2018 |
Sách, tạp chí |
Tiêu đề: |
Pair-linking for collectiveentity disambiguation: Two could be better than all |
|
[16] G. Wan and B. Du, “Gaussianpath: A bayesian multi-hop reasoning frame- work for knowledge graph reasoning,” in Proceedings of the AAAI Confer- ence on Artificial Intelligence, vol. 35, 2021, pp. 4393–4401 |
Sách, tạp chí |
Tiêu đề: |
Gaussianpath: A bayesian multi-hop reasoning frame- work for knowledge graph reasoning |
Tác giả: |
G. Wan, B. Du |
Nhà XB: |
Proceedings of the AAAI Conference on Artificial Intelligence |
Năm: |
2021 |
|
[17] Y. Yan, L. Liu, Y. Ban, B. Jing, and H. Tong, “Dynamic knowledge graph alignment,” in Proceedings of the AAAI Conference on Artificial Intelli- gence, vol. 35, 2021, pp. 4564–4572 |
Sách, tạp chí |
Tiêu đề: |
Dynamic knowledge graph alignment |
Tác giả: |
Y. Yan, L. Liu, Y. Ban, B. Jing, H. Tong |
Nhà XB: |
Proceedings of the AAAI Conference on Artificial Intelligence |
Năm: |
2021 |
|
[18] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song, “Variational reasoning for question answering with knowledge graph,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 6069–6076 |
Sách, tạp chí |
Tiêu đề: |
Variationalreasoning for question answering with knowledge graph |
|
[19] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li, “Ex- ploiting centrality information with graph convolutions for network repre- sentation learning,” in IEEE 35th International Conference on Data Engi- neering (ICDE), 2019, pp. 590–601 |
Sách, tạp chí |
Tiêu đề: |
Exploiting centrality information with graph convolutions for network representation learning |
Tác giả: |
H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, X. Li |
Nhà XB: |
IEEE 35th International Conference on Data Engineering (ICDE) |
Năm: |
2019 |
|
[20] M. Chen, I. W. Tsang, M. Tan, and T. J. Cham, “A unified feature selection framework for graph embedding on high dimensional data,” IEEE Transac- tions on Knowledge and Data Engineering, vol. 27, no. 6, pp. 1465–1477, 2014 |
Sách, tạp chí |
Tiêu đề: |
A unified feature selection framework for graph embedding on high dimensional data |
Tác giả: |
M. Chen, I. W. Tsang, M. Tan, T. J. Cham |
Nhà XB: |
IEEE Transactions on Knowledge and Data Engineering |
Năm: |
2014 |
|