1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm

36 472 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 1,07 MB

Nội dung

Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm

Luận văn tốt nghiệp Giải pháp tính hạng trang khai thác cấu trúc Block của web áp dụng vào máy tìm kiếm 1 Mở đầu Ngày nay, với những tác động to lớn mạnh mẽ của mạng Internet tới đời sống kinh tế, chính trị văn hóa của con người, lĩnh vực khai phá dữ liệu Web đã đang trở thành lĩnh vực nghiên cứu thời sự, thu hút được sự quan tâm của rất nhiều nhà nghiên cứu. Khai phá dữ liệu Web là điểm hội tụ của rất nhiều lĩnh vực nghiên cứu như: cơ sở dữ liệu, truy xuất thông tin (information retrival), trí tuệ nhân tạo, nó còn là một lĩnh vực nhỏ trong học máy (machine learning) xử lý ngôn ngữ tự nhiên. Một trong những lĩnh vực nghiên cứu đang rất được quan tâm hiện nay trong khai phá Web là việc xây dựng các công cụ tìm kiếm trên Web. Bởi trong bối cảnh xã hội thông tin ngày nay, nhu cầu nhận được các thông tin một cách nhanh chóng, chính xác đang ngày càng trở nên cấp thiết. Để tìm ra được các thông tin có ích đối với mỗi người dùng, đặc biệt là vớ i những người dùng thiếu kinh nghiệm hoàn toàn không phải là việc đơn giản. Với một công cụ tìm kiếm, khả năng người dùng có thể duyệt Web và định vị được các trang Web mình quan tâm đã trở nên dễ dàng hơn nhiều. Tuy nhiên hiện nay, do sự phát triển thay đổi với tốc độ quá nhanh của Internet, các công cụ tìm kiếm đang phải đối mặt với những bài toán nan giải về tốc độ. Trong đó có bài toán về tốc độ tính toán hạng cho các trang Web, thực thi nhiệm vụ tính toán độ “quan trọng” cho các trang thông tin kết quả tìm được so với yêu cầu tìm kiếm của người dùng. Vì kích thước của World Wide Web là vô cùng lớn, lên tới hàng tỉ trang web, không những thế các trang Web này không ở trạng thái tĩnh mà luôn luôn thay đổi. Do đó tính hiệu quả về thời gian càng trở nên quan trọng. Nếu phép tính PageRank cho tập các trang web trong cơ sở dữ liệu không đủ nhanh, hệ thống tìm kiếm sẽ không cung cấp được chất l ượng tìm kiếm tốt cho người dùng. Ý thức đây là một lĩnh vực nghiên cứu có nhiều triển vọng, chúng tôi đã chọn hướng nghiên cứu “Giải pháp tính hạng trang khai thác cấu trúc Block của Web áp dụng vào máy tìm kiếm” cho đề tài khóa luận tốt nghiệp của mình. Khóa luận tập trung nghiên cứu bài toán tính hạng trang web (PageRank) trong các máy tìm kiếm: cấu trúc, thuật toán cũng như các tiêu chuẩn đánh giá quá trình này. Chúng tôi cũng đã áp dụng các lý thuyết trên để đi sâu phân tích mã nguồn, tìm hiể u cơ chế thực thi quá trình tính PageRank trong máy tìm kiếm Vinahoo, một máy tìm kiếm tiếng Việt mã nguồn mở với nhiều tính năng ưu việt. Từ việc nghiên cứu này, chúng tôi đã đề xuất một giải pháp áp dụng khái niệm thành phần liên thông trong ma trận liên kết Web trong Vinahoo, đồng thời thực hiện việc cài đặt thử nghiệm trên mã nguồn của máy tìm kiếm này. Nội dung của khóa luận được tổ chức thành bốn chương v ới nội dung được giới thiệu như dưới đây. 2 Chương 1 với tên gọi “Tổng quan về khai phá dữ liệu web máy tìm kiếm” trình bày về những nội dung nghiên cứu cơ bản của khai phá web, những thuận lợi khó khăn trong lĩnh vực này. Phần cuối của chương này trình bày các thành phần cơ bản của một máy tìm kiếm. “Một số thuật toán tính hạng trang điển hình” là tiêu đề của chương 2. Phần đầu chương này giới thiệu tổng quan về bài toán xêp hạng trang Web trong máy tìm kiếm thuật toán tính PageRank cơ bản. Việc phân tích nhu cầu tăng tốc độ tính toán PageRank trong máy tìm kiếm, một số thuật toán cải tiến từ phương pháp PageRank cùng với đánh giá được trình bày trong phần cuối của chương. Chương 3 với tên gọi “Thuật toán sử dụng cấu trúc Block theo thành phần liên thông” tập trung nghiên cứu về giải pháp khai thác cấu trúc Web. Chương này giới thiệu khái niệm, một số vấn đề v ề lý thuyết, chứng minh đánh giá thuật toán CCP sử dụng cấu trúc này. Chương 4 với tiêu đề “Giải pháp tính hạng trang cải tiến cho máy tìm kiếm Vinahoo” giới thiệu thành phần tính PageRank trong module đánh chỉ số của Vinahoo, các cải tiến, cài đặt đánh giá kết quả thực nghiệm. 3 Chương 1. Tổng quan về khai phá dữ liệu Web máy tìm kiếm 1.1. Khai phá dữ liệu Web 1.1.1. Tổng quan về khai phá dữ liệu Web Ngày nay, sự phát triển nhanh chóng của mạng Internet Intranet đã sinh ra một khối lượng khổng lồ các dữ liệu dạng siêu văn bản (dữ liệu Web). Trong những năm gần đây Intrnet đã trở thành một trong những kênh về khoa học, thông tin kinh tế, thương mại quảng cáo. Một trong những lý do cho sự phát triển này là chi phí thấp để duy trì một trang Web trên Internet. So sánh với những dịch vụ khác như đăng tin hay quảng cáo trên một tờ báo hay tạp chí, thì một trang Web "đòi" rẻ hơn rất nhiều cập nhật nhanh chóng hơn tới hàng triệu người dùng khắp mọi nơi trên thế giới. Có thể nói Internet như là cuốn từ điển Bách khoa toàn thư với nội dung hình thức đa dạng. Nó như một xã hội ảo, nó bao gồm các thông tin về mọi mặt của đời sống kinh tế, xã hội được trình bày dưới d ạng văn bản, hình ảnh, âm thanh Hình 1. Khai phá Web, công việc không dễ dàng Tuy nhiên, Internet là một môi trường đa phương tiện động bao gồm sự kết hợp của các cơ sở dữ liệu không đồng nhất, các chương trình các giao tiếp người dùng. Rõ ràng, khai phá dữ liệu text chỉ là một lĩnh vực nhỏ trong môi trường này. Khai phá dữ liệu trên Internet, hay thường được gọi là khai phá web ngoài việc cần khai phá được nội dung các trang văn bản, còn phải khai thác được các nguồn lực nói trên cũng như mối quan hệ giữa chúng. Khai phá Web, sự giao thoa giữa khai phá dữ liệu Word-Wide-Web, đang phát triển mạnh mẽ bao gồm rất nhiều lĩnh vực nghiên cứu như cơ sở dữ liệu, trí tuệ nhân tạo, truy xuất thông tin (information retrival) nhiều lĩnh vực khác. Các công nghệ Agent-base, truy xuất thông tin dựa trên khái niệm (concept-based), truy xuất thông tin sử dụng case-base reasoning Tri th ứ c WWW 4 tính hạng văn bản dựa trên các đặc trưng (features) siêu liên kết thường được xem là các lĩnh vực nhỏ trong khai phá web. Khai phá Web vẫn chưa được định nghĩa một cách rõ ràng các chủ đề trong đó vẫn tiếp tục được mở rộng. Tuy vậy, chúng ta có thể hiểu khai phá web như việc: trích ra các thành phần được quan tâm hay được đánh giá là có ích cùng các thông tin tiềm năng từ các tài nguyên hoặc các hoạt động liên quan tới World-Wide Web[9]. Hình 2 thể hiện một sự phân lo ại các lĩnh vực nghiên cứu quen thuộc trong khai phá Web. Người ta thường phân khai phá web thành 3 lĩnh vực chính: khai phá nội dung web (web content mining), khai phá cấu trúc web (web structure mining) khai phá sử dụng web (web usage mining). Hình 2: Các nội dung trong khai phá Web 1.1.2. Các lĩnh vực của khai phá dữ liệu Web 1.1.2.1 Khai phá nội dung Web Phần lớn các tri thức của World-Wide Web được chứa trong nội dung văn bản. Khai phá nội dung web (web content mining) là các quá trình xử lý để lấy ra các tri thức từ nội dung các trang văn bản hoặc mô tả của chúng. Có hai chiến lược khai phá n ội dung web: một là khai phá trực tiếp nội dung của trang web, một là nâng cao khả năng tìm kiếm nội dung của các công cụ khác như máy tìm kiếm. - Khai phá nội dung trang web(Web Page summarization): liên quan tới việc truy xuất các thông tin từ các văn bản có cấu trúc, văn bản siêu liên kết, hay các văn bản bán cấu trúc. Lĩnh vực này liên quan chủ yếu tới việc khai phá bản thân nội dung các văn bản. KHAI PHÁ DỮ LIỆU WEB Khai phá nội dung Web Khai phá cấu trúc Web Khai phá sử dụng Web Khai phá nội dung trang Web Tối ưu kết quả trả về Khai phá các mẫu truy cập Phân tích các xu hướng cá nhân 5 - Tối ưu kết quả trả về (search engine result summarization): Tìm kiếm trong kết quả. Trong các máy tìm kiếm, sau khi đã tìm ra những trang Web thoả mãn yêu cầu người dùng, còn một công việc không kém phần quan trọng, đó là phải sắp xếp, chọn lọc kết quả theo mức độ hợp lệ với yêu cầu người dùng. Quá trình này thường sử dụng các thông tin như tiêu đề trang, URL, content-type, các liên kết trong trang web để tiến hành phân lớp đưa ra tập con các kế t quả tốt nhất cho người dùng. 1.1.2.2. Khai phá cấu trúc web Nhờ vào các kết nối giữa các văn bản siêu liên kết, World-Wide Web có thể chứa đựng nhiều thông tin hơn là chỉ các thông tin ở bên trong văn bản. Ví dụ, các liên kết trỏ tới một trang web chỉ ra mức độ quan trọng của trang web đó, trong khi các liên kết đi ra từ một trang web thể hiện các trang có liên quan tới chủ đề đề cập trong trang hiện tại. nội dung của khai phá c ấu trúc Web (web structure mining) là các quá trình xử lý nhằm rút ra các tri thức từ cách tổ chức liên kết giữa các tham chiếu của các trang web. 1.1.2.3 Khai phá sử dụng web Khai phá sử dụng web (web usage mining) hay khai phá hồ sơ web (web log mining) là việc xử lý để lấy ra các thông tin hữu ích trong các hồ sơ truy cập Web. Thông thường các web server thường ghi lại tích lũy các dữ liệu về các tương tác của người dùng mỗi khi nó nhận được một yêu cầu truy cập. Việc phân tích các hồ sơ truy cập web củ a các web site khác nhau sẽ dự đoán các tương tác của người dùng khi họ tương tác với Web cũng như tìm hiểu cấu trúc của Web, từ đó cải thiện các thiết kế của các hệ thống liên quan. Có hai xu hướng chính trong khai phá sử dụng web là General Access Pattern Tracking Customizied Usage tracking. - Phân tích các mẫu truy cập (General Access Pattern tracking): phân tích các hồ sơ web để biết được các mẫu các xu hướng truy cập. Các phân tích này có thể giúp cấu trúc lại các site trong các phân nhóm hiệu quả hơn, hay xác định các vị trí qu ảng cáo hiệu quả nhất, cũng như gắn các quảng cáo sản phẩm nhất định cho những người dùng nhất định để đạt được hiệu quả cao nhất - Phân tích các xu hướng cá nhân (Cusomized Usage tracking): Mục đích là để chuyên biệt hóa các web site cho các lớp đối tượng người dùng. Các thông tin được hiển thị, độ sâu của cấu trúc site định dạng của các tài nguyên, tất cả đều có thể chuyên biệt hóa một cách tự động cho mỗi người dùng theo thời gian dựa trên các mẫu truy cập của họ. 6 1.1.3. Khó khăn của khai phá Web World Wide Web là một hệ thống rất lớn phân bố rộng khắp, cung cấp thông tin trên mọi lĩnh vực khoa học, xã hội, thương mại, văn hóa, Web là một nguồn tài nguyên giàu có cho Khai phá dữ liệu. Những quan sát sau đây cho thấy Web đã đưa ra những thách thức lớn cho công nghệ Khai phá dữ liệu [6]. 1.1.3.1. Web quá lớn để tổ chức thành kho dữ liệu phục vụ Dataming Các CSDL truyền thống thì có kích thước không lớn lắm th ường được lưu trữ tập trung, trong khi đó kích thước Web rất lớn, tới hàng terabytes thay đổi liên tục, không những thế còn phân tán trên rất nhiều máy tính khắp nơi trên thế giới. Một vài nghiên cứu về kích thước của Web[6] đã đưa ra các số liệu như sau: Hiện nay trên Internet có khoảng hơn một tỷ các trang Web được cung cấp cho người sử dụng. Kích thước trung bình của mỗi trang là 5-10KB thì tổng kích thước của WWW ít nhất là 10 terabyte. Còn tỷ lệ tăng của các trang Web thì thật sự gây ấn tượng. Hai năm gần đây số các trang Web tăng gấp đôi còng tiếp tục tăng trong hai năm tới. Nhiều tổ chức và xã hội đặt hầu hết những thông tin công cộng của họ lên Web. Như vậy việc xây dựng một kho dữ liệu (datawarehouse) để lưu trữ, sao chép hay tích hợp các dữ liệu trên Web là gần như không thể. 1.1.3.2. Độ phức tạp của trang Web lớn hơn rất nhiều so với những tài liệu văn bản truyền thống khác Các dữ liệu trong các CSDL truyền thống thì thường là loại dữ liệu đồng nhất (về ngôn ngữ, định dạng,…), còn dữ liệu Web thì hoàn toàn không đồng nhất. Dữ liệu Web bao gồm rất nhiều loại ngôn ngữ khác nhau (cả ngôn ngữ diễn tả nội dung lẫn ngôn ngữ lập trình), nhiề u loại định dạng khác nhau (text, HTML, PDF, hình ảnh, âm thanh,…), nhiều loại từ vựng khác nhau (địa chỉ email, các liên kết, các mã nén (zipcode), số điện thoại ). Nói cách khác, các trang Web thiếu một cấu trúc thống nhất. Chúng được coi như một thư viện kỹ thuật số rộng lớn, tuy nhiên số lượng khổng lồ các tài liệu trong thư viện thì không được sắp xếp theo một tiêu chuẩn đặc biệt nào, không theo phạm trù nào, Điều này là mộ t thử thách rất lớn cho việc tìm kiếm thông tin cần thiết trong một thư viện như thế. 1.1.3.3. Web là một nguồn tài nguyên thông tin có độ thay đổi cao Web không chỉ có thay đổi về độ lớn mà thông tin trong chính các trang Web cũng được cập nhật liên tục. Theo kết quả nghiên cứu [6] hơn 500.000 trang Web 7 trong hơn 4 tháng thì 23% các trang thay đổi hàng ngày, khoảng hơn 10 ngày thì 50% các trang trong tên miền đó biến mất, nghĩa là địa chỉ URL của nó không còn tồn tại nữa. Tin tức, thị trường chứng khoán, các công ty quản cáo trung tâm phục vụ Web thường xuyên cập nhật trang Web của họ. Thêm vào đó sự kết nối thông tin sự truy cập bản ghi cũng được cập nhật. 1.1.3.4. Web phục vụ một cộng đồng người dùng rộng lớn đa dạng Internet hiện nay nối với khoảng 50 triệu trạm làm việc [6], cộng đồng người dùng vẫn đang nhanh chóng lan rộng. Mỗi người dùng có một kiến thức, mối quan tâm, sở thích khác nhau. Nhưng hầu hết người dùng không có kiến thức tốt về cấu trúc mạng thông tin, hoặc không có ý thức cho những tìm kiếm, rất dễ bị "lạc" khi trong khối dữ liệu khổng lồ của mạng hoặc s ẽ chán khi tìm kiếm mà chỉ nhận những mảng thông tin không mấy hữu ích. 1.1.3.5. Chỉ một phần rất nhỏ của thông tin trên Web là thực sự hữu ích Theo thống kê [6], 99% của thông tin Web là vô ích với 99% người dùng Web. Trong khi những phần Web không được quan tâm lại bị búi vào kết quả nhận được trong khi tìm kiếm. Vậy thì ta cần phải khai phá Web như thế nào để nhận được trang web chất lượng cao nhất theo tiêu chuẩn của người dùng? Như vậy chúng ta có thể thấy các điểm khác nhau giữa việc tìm kiếm trong một CSDL truyền thống với vviệc tìm kiếm trên Internet. Những thách thức trên đã đẩy mạnh việc nghiên cứu khai phá sử dụng tài nguyên trên Internet. 1.1.4. Thuận lợi của khai phá Web Bên cạnh những thử thách trên, khai phá Web cũng có những thuận lợi: 1. Web bao gồm không chỉ có các trang mà còn có cả các liên kết trỏ từ trang này tới trang khác. Khi một tác giả tạo một liên kết từ trang của ông ta tới một trang A có ngh ĩa là A là trang có hữu ích với vấn đề đang bàn luận. Nếu một trang càng nhiều liên kết từ trang khác trỏ đến chứng tỏ trang đó quan trọng. Vì vậy các thông tin liên kết trang sẽ cung cấp một lượng thông tin giàu có về mối liên quan, chất lượng, cấu trúc của nội dung trang Web, vì thế là một nguồn tài nguyên lớn cho khai phá Web. 2. Một máy chủ Web thường đăng ký một bản ghi đầu vào (Weblog entry) cho mọi lần truy cập trang Web. Nó bao gồm địa chỉ URL, địa chỉ IP, timestamp. Dữ liệu Weblog cung cấp lượng thông tin giàu có về những trang Web động. Thực hiện phân 8 tích các hồ sơ truy cập này ta có thể rút ra những thống kê về xu hướng truy cập Web, cấu trúc Web nhiều thông tin hữu ích khác. 1.2. Tổng quan về máy tìm kiếm 1.2.1. Nhu cầu Như đã đề cập ở phần trên, Internet là một kho thông tin khổng lồ phức tạp. Thông tin trên các trang Web đa dạng về mặt nội dung cũng như hình thức. Tuy nhiên cùng với sự đa dạng số lượng lớn thông tin như vậy đã nảy sinh vấn đề quá tải thông tin. Cùng với sự thay đổi phát triển hàng ngày hàng giờ về nội dung cũng như số lượng của các trang Web trên Internet thì vấn đề tìm kiếm thông tin đối với người sử dụng lại ngày càng khó khăn. Đối với mỗi người dùng chỉ một phần rất nhỏ thông tin là có ích, chẳng hạn có người chỉ quan tâm đến trang Thể thao, Văn hóa mà không mấy khi quan tâm đến Kinh tế. Người ta không thể tìm tự kiếm địa chỉ trang Web chứa thông tin mà mình cần, do vậy đòi hỏi cần phải có một trình tiện ích quản lý nội dung của các trang Web cho phép tìm thấy các đị a chỉ trang Web có nội dung giống với yêu cầu của người tìm kiếm. Định nghĩa [14]:Máy tìm kiếm (search engine) là một hệ thống được xây dựng nhằm tiếp nhận các yêu cầu tìm kiếm của người dùng (thường là một tập các từ khóa), sau đó phân tích yêu cầu này tìm kiếm thông tin trong cơ sở dữ liệu được tải xuống từ Web đưa ra kết quả là các trang web có liên quan cho người dùng. Cụ thể, người dùng gửi m ột truy vấn, dạng đơn giản nhất là một danh sách các từ khóa, máy tìm kiếm sẽ làm việc để trả lại một danh sách các trang Web có liên quan hoặc có chứa các từ khóa đó. Phức tạp hơn, thì truy vấn là cả một văn bản hoặc một đoạn văn bản hoặc nội dung tóm tắt của văn bản. Một số máy tìm kiếm điển hình hiện nay: Yahoo, Google, Alvista, ASPSeek 1.2.2. Cấu trúc cơ bản ho ạt động của một máy tìm kiếm Một máy tìm kiếm có thể được xem như là một ví dụ của hệ thống truy xuất thông tin Information Retrival (IR)[14]. Một hệ thống truy xuất thông tin IR thường tập trung vào việc cải thiện hiệu quả thông tin được lấy ra bằng cách sử dụng việc đánh chỉ số dựa trên các từ khóa (term-base indexing)[11] kỹ thuật tổ chức lại các câu truy vấn (query refomulation technique)[12]. Quá trình xử lý các văn bản dự a trên từ khóa ban đầu trích ra các từ khóa trong văn bản sử dụng một từ điển được xây dựng 9 trước, một tập các từ dừng, các qui tắc (stemming rule)[14] chuyển các hình thái của từ về dạng từ gốc. Sau khi các từ khóa đã được lấy ra, các hệ thống thường sử dụng phương pháp TF-IDF (hoặc biến thể của nó) để xác định mức độ quan trọng của các từ khóa. Do đó, một văn bản có thể được biểu diễn bởi một tập các từ khóa độ quan trọng c ủa chúng. Mức độ tương tự đo được giữa một câu truy vấn một văn bản chính bằng tích vô hướng giữa hai vector các từ khóa tương ứng. Để thể hiện mức độ hợp lệ của các văn bản câu truy vấn, các văn bản được lấy ra được biểu diễn dưới dạng một danh sách được xếp hạng dựa trên độ đo mức độ tương t ự giữa chúng câu truy vấn. Hình 3 miêu tả cấu trúc cơ bản của một máy tìm kiếm. Mặc dù trong thực tế, mỗi máy tìm kiếm có cách thực thi riêng, nhưng về cơ bản vẫn dựa trên cơ chế hoạt động như được mô tả. Hình 3: Mô hình cấu trúc của một máy tìm kiếm - Module dò tìm (crawler): là các chương trình có chức năng cung cấp dữ liệu cho các máy tìm kiếm hoạt động. Module này thực hiện công việc duyệt Web, nó đi theo các liên kết trên các trên Web để thu thập nội dung các trang Web. Các chương trình dò tìm được cung cấp các địa chỉ URL xuất phát, đọc các trang web tương ứng, phân tích tìm ra các URL có trong các trang web đó. Sau đó bộ tìm duyệt cung cấp các địa chỉ URL kết quả cho bộ điều khiể n dò tìm (crawl control). Bộ điều khiển này sẽ quyết định xem URL nào sẽ được duyệt tiếp theo gửi lại kết quả cho bộ dò tìm. Kho tran g web Bé t×m duyÖt [...]... tối ưu Chương tiếp theo giới thiệu mô hình máy tìm kiếm Vinahoo áp dụng thử nghiệm thuật toán Modified Adaptive PageRank cho bài toán tính hạng trang trong máy tìm kiếm Vinahoo 27 Chương 4 Giải pháp tính hạng trang cải tiến cho máy tìm kiếm Vinahoo 4.1 Tính toán PageRank trong Vinahoo Trong [1], tác giả đã trình bày kỹ về cấu trúc, CSDL, mã nguồn của máy tìm kiếm Vinahoo Ở đây, chúng tôi tập trung... gian tìm kiếm nhanh lẫn tính sự phù hợp cao giữa các trang thông tin kết quả tìm được với yêu cầu tìm kiếm của người dùng Khi người dùng nhập vào một nhóm từ khóa tìm kiếm, máy tìm kiếm sẽ thực hiện nhiệm vụ tìm kiếm trả lại một số trang Web theo yêu cầu người dùng Nhưng số các trang Web liên quan đến từ khóa tìm kiếm có thể lên tời hàng vạn trang, trong khi người dùng chỉ quan tâm đến một số ít trang. .. thông tin tìm kiếm được Yêu cầu đặt ra là cần phải đưa ra một phương pháp có tốc độ nhanh như phương pháp PageRank lại có quan tâm đến nội dung của trang Web thông qua "chủ đề" của nó Hơn nữa, nếu khai thác được mối quan tâm của người dùng đối với các trang Web trong việc tính độ phù hợp của trang Web với câu hỏi người dùng thì việc đó càng có ý nghĩa Taher H Haveliwala [15,16] đề xuất phương pháp mới... PageRank trên vào máy Vinahoo đạt được một số kết quả bước đầu tương đối khả quan Tuy nhiên do hạn chế về thời gian hoàn thành khóa luận nên chương trình cài đặt chưa cài đặt hoàn chỉnh thuật toán CCP sử dụng cấu trúc Block theo thành phần liên thông trong ma trận liên kết Web trong việc tính PageRank trong máy tìm kiếm Vinahoo 2 Hướng phát triển tiếp theo Khai phá cấu trúc web vào máy tìm kiếm trong... Topic-sensitive PageRank [15,16] Một số nghiên cứu khai thác khía cạnh nội dung của trang Web đối với độ phù hợp của trang Web tìm kiếm với câu hỏi người dùng cũng được đề cập trong một số công trình [4,7] 2.1.2 Độ quan trọng của trang web Một số phương pháp được sử dụng để đo độ quan trọng của các trang web a Các từ khóa trong văn bản: Một trang web được coi là hợp lệ nếu nó có chứa một số hoặc tất... quan trọng của mỗi trang Web dựa vào các liên kết, trước khi tìm hiểu một phương pháp được áp dụng trong thực tế Giả sử rằng các trang Web tạo thành một đồ thị liên thông, nghĩa là từ một trang bất kì có thể có đường liên kết tới một trang Web khác trong đồ thị đó Công việc tính PageRank được tiến hành như sau: Ta đánh số các trang Web có được từ 1, 2,…,m Gọi N(i) là số liên kết ra ngoài của trang thứ... riêng của ma trận AT Như ta đã thấy ỏ trên, việc tính toán mức độ quan trọng hay hạng trang theo phương pháp PageRank có thể được thực hiện thông qua việc phân tích các liên kết tới trang Web đó Nếu nó có những liên kết quan trọng trỏ tới thì rất có thể trang đó là trang quan trọng Tuy nhiên việc tính toán hạng trang lại phụ thuộc vào việc biết được hạng của các trang Web có liên kết tới nó, như... vậy muốn tính hạng trang này ta phải biết được hạng của trang liên kết tới nó, điều này có thể gây ra việc lặp vô hạn rất tốn kém Khắc phục bằng cách đưa về các vectơ hạng, ta có thể tính toán được các hạng trang thông qua việc tính toán vectơ riêng của ma trận AT Trong đại số tuyến tính có khá nhiều các phương pháp có thể tính được vectơ riêng của ma trận tuy nhiên có một phương pháp khá tiện có thể... chỉ mục này, máy tìm kiếm cung cấp tất cả các địa chỉ URL của các trang web theo các truy vấn bằng từ khóa của người dùng Thông thường bộ tạo chỉ mục tạo ra chỉ mục nội dung chỉ mục cấu trúc (structure index) Chỉ mục nội dung chứa thông tin về các từ xuất hiện trong các trang web Chỉ mục cấu trúc thể hiện mối liên kết giữa các trang web, tận dụng được đặc tính quan trọng của dữ liệu web là các liên... với nhau Hầu hết các máy tìm kiếm sử dụng hạng trang làm độ phù hợp của kết quả tìm kiếm với các thuật toán điển hình là PageRank, 11 Modified Adaptive PageRank [10] Hướng thứ hai coi độ phù hợp của trang Web với câu hỏi của người dùng không chỉ dựa trên giá trị hạng trang Web như trên mà còn phải tính đến mối liên quan giữa nội dung trang Web đó với nội dung câu hỏi theo yêu cầu của người dùng mà thuật . Luận văn tốt nghiệp Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm 1 Mở đầu Ngày. trang khai thác cấu trúc Block của Web và áp dụng vào máy tìm kiếm cho đề tài khóa luận tốt nghiệp của mình. Khóa luận tập trung nghiên cứu bài toán tính

Ngày đăng: 16/02/2014, 02:53

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Bùi Quang Minh. Máy tìm kiếm Vinahoo. Báo cáo kết quả nghiên cứu thuộc Đề tài khoa học đặc biệt cấp ĐHQGHN mã số QG-02-02, 2002 Sách, tạp chí
Tiêu đề: Máy tìm kiếm Vinahoo
[2] Đỗ Thị Diệu Ngọc, Nguyễn Hoài Nam, Nguyễn Yến Ngọc, Nguyễn Thu Trang . Giải pháp tính hạng trang cải tiến cho máy tìm kiếm Vinahoo. Chuyên san “Các công trình nghiên cứu - triển khai Viễn thông và CNTT”, Tạp chí Bưu chính - Viễn thông, 14, 4-2005, 65-71 Sách, tạp chí
Tiêu đề: Giải pháp tính hạng trang cải tiến cho máy tìm kiếm Vinahoo". Chuyên san “Các công trình nghiên cứu - triển khai Viễn thông và CNTT
[4] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Stable algorithms for link analysis. In Proceedings of the 24th Annual International ACM SIGIR Conference. ACM, 2001 Sách, tạp chí
Tiêu đề: Proceedings of the 24th Annual International ACM SIGIR Conference. ACM
[5] Jon Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM , 46(5):604-632, November 1999 Sách, tạp chí
Tiêu đề: Journal of the ACM
[6] Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001, trang 435-443 Sách, tạp chí
Tiêu đề: Data Mining: Concepts and Techniques
[7] Kir Kolyshkin. Vinahoo Manual. Cung cấp tại http://www.Vinahoo.org. 2002.The Anatomy of large scale Hypertextual Web Search Engine Sách, tạp chí
Tiêu đề: Vinahoo Manual." Cung cấp tại http://www.Vinahoo.org. 2002
[8] Page, L., Brin, S., Motwani, R. and Winograd, T. 1998 The PageRank citation ranking: bringing order to the Web. Technical report, Stanford University Sách, tạp chí
Tiêu đề: The PageRank citation ranking: bringing order to the Web
[9] Raymond Kosala, Hendrik Blockeel. Web Mining Research: A Survey. Department of Computer Science, Katholieke Uiniversiteit Leuven, Heuverlee, Belgium, trang 601-602 Sách, tạp chí
Tiêu đề: Web Mining Research: A Survey
[10] Sepandar Kamvar, Taher Haveliwala, and Gene Golub (2003). Adaptive Methods for the Computation of PageRank. Technical report, Stanford University Sách, tạp chí
Tiêu đề: Adaptive Methods for the Computation of PageRank
Tác giả: Sepandar Kamvar, Taher Haveliwala, and Gene Golub
Năm: 2003
[12] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation methods for accelerating PageRank computations. In Proceedings of the Twelfth International World Wide Web Conference, 2003 Sách, tạp chí
Tiêu đề: Extrapolation methods for accelerating PageRank computations
[13] Sheldon Ross. Introduction to probability models, 8th Edition. Academic Press, January 2003 Sách, tạp chí
Tiêu đề: Introduction to probability models, 8th Edition
[14] Shian - Hua Lin, Meng Chang Chen, Jan-Ming Ho, ACIRD: Intelligent Internet Document Organization and Retrival. IEEE transaction on knowledge and data engineering VOL 14, NO 3 May/June 2002 Sách, tạp chí
Tiêu đề: ACIRD: Intelligent Internet Document Organization and Retrival
[15] Taher H. Haveliwala. Topic-Sensitive PageRank. WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA (ACM 1581134495/02/0005) Sách, tạp chí
Tiêu đề: Topic-Sensitive PageRank
[16] Taher H. Haveliwala. Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search, 2003 Sách, tạp chí
Tiêu đề: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search
[17] Taher H. Haveliwala. Efficient Computation of PageRank. Technical report, Stanford University, 1999.[18] http://www.google.com Sách, tạp chí
Tiêu đề: Efficient Computation of PageRank
[3] Phạm Thị Thanh Nam, Bùi Quang Minh, Hà Quang Thụy. Giải pháp tìm kiếm trang Web tương tự trong máy tìm kiếm Vinahoo. Tạp chí Tin học và Điều khiển học, 20(4), 293-304, 2004 Khác
[11] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning Gene H Khác

HÌNH ẢNH LIÊN QUAN

Hình 1. Khai phá Web, cơng việc không dễ dàng - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
Hình 1. Khai phá Web, cơng việc không dễ dàng (Trang 4)
liên quan tới World-Wide Web[9]. Hình 2 thể hiện một sự phân loại các lĩnh vực - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
li ên quan tới World-Wide Web[9]. Hình 2 thể hiện một sự phân loại các lĩnh vực (Trang 5)
trước, một tập các từ dừng, và các qui tắc (stemming rule)[14] chuyển các hình thái - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
tr ước, một tập các từ dừng, và các qui tắc (stemming rule)[14] chuyển các hình thái (Trang 10)
ở hình vẽ 3, cụm (4,5) là Websink, người dùng khi đi đến nút (4,5) sẽ bị tắc, khi đó - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
h ình vẽ 3, cụm (4,5) là Websink, người dùng khi đi đến nút (4,5) sẽ bị tắc, khi đó (Trang 16)
Hình6: Cấu trúc hàng đợi CSiteQueue trong Vinahoo - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
Hình 6 Cấu trúc hàng đợi CSiteQueue trong Vinahoo (Trang 30)
hình Pentium 4HT 3.0GHz, 512MB RAM. - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
h ình Pentium 4HT 3.0GHz, 512MB RAM (Trang 32)
được sau hai câu truy vấn: “TOEFL” và “TEST” được cho trong bảng dưới. - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
c sau hai câu truy vấn: “TOEFL” và “TEST” được cho trong bảng dưới (Trang 33)
Hình 9: Biểu đồ thể hiện số vòng lặp cần thiết tính tốn PageRank của 3 thuật toán - Giải pháp tính hạng trang khai thác cấu trúc Block của web và áp dụng vào máy tìm kiếm
Hình 9 Biểu đồ thể hiện số vòng lặp cần thiết tính tốn PageRank của 3 thuật toán (Trang 33)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w