1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải đáp Toán cấp 326821

20 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 533,97 KB

Nội dung

www.MATHVN.com GI I ÁP TOÁN C P HÀM S L Y TH A, HÀM S M VÀ HÀM S LÔGARIT PH N CÔNG TH C BI N ( T rang – 11 ) I O HÀM ( T rang 13 – 16 ) GI I H N ( T rang 16 – 17 ) www.DeThiThuDaiHoc.com ThuVienDeThi.com TÍNH N I U VÀ CÁC B T NG TH C ( T rang 18 – 43 ) GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com L Y TH A, HÀM S PH N 1: HÀM S I CÁC CÔNG TH C BI N M VÀ HÀM LÔGARIT I L Y TH A (Gi s bi u th c có ngh a): m  1) a  2) a  n  n 4)  a   a 3) a n  n a m a   a a  a 5) a a   a   6)   a   7)  ab   a b 8)     b a b Chú ý: +) Khi xét l y th a v i s m s m nguyên âm c s ph i khác +) Khi xét l y th a v i s m khơng ngun c s ph i d ng A CÁC VÍ D MINH H A Ví d 1: Tính giá tr bi u th c sau: 1) A =  2) B = (0, 04) 4) D = 43 21 2 3 5) E = 1,5  (0,125)  3) C =  0,5  625 4 81 5 12 6) F =   18 27 0,25  1 2   4 847 847  6 27 27 6 Gi i: 3 1) A =    2    23   23  22  12 2) B = (0, 04) 1,5  (0,125)        25  4  1 3) C =  0,5   6250,25     4 1  1   8  3 2  5    19  3   21    4 3   3    53  2  121  11  2         4    19 3 (3)3 19  3   19  5    11      10 27  2   27 4) D = 43 2.21 2.23  262 2.22 5) E = 81 5 12   18 27 6) F = 6  F3     24  16 35.3 2.3 35 3 1  101  2   3.2 3    10 3    3 847 847  6 Ta áp d ng h ng đ ng th c :  a  b   a  b3  3ab  a  b  27 27 847 847 847 847  847 847   6  6  33  6  6 27 27 27 27  27 27    T rang www.DeThiThuDaiHoc.com ThuVienDeThi.com 1  19  3 3 GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com  F3  12  3 36  847 F  12  5F  F3  5F  12    F  3  F2  3F  4  27  F = ho c F2  3F   (vô nghi m) V y F = n gi n bi u th c sau (gi s bi u th c có ngh a): Ví d 2: 35 1) A = a 24  a b 4 2) B =    b a   a   a a   12 4) D = 1    : a b      b b    1   1  a b a  b   14 a  3) C =   : a b   1 1   b   a  a 2b4 a  b4       5) E =  a  b     b b2    :  b  2b a a    13  a b   :2 a  b  6) F =    b a  ab   32   12 a b a  b2 8) H =    ab       a  b 2  a  b        ab  ab  b  7) G =  ab  : a b a  ab  b  ab  Gi i: 1) A = a2 4 3 1  b 3 9) I =   a    a  a  ab  4b  a  8a b 1    3 a   a a    a   a  a     35  a b 2) B =    b a   35  7 4 1 1     a   b   b   b5 b                  a   b a   a   a          1 1     1 1 1 2 2   a b a b   a  ab a  b   14 b  3) C = :a b  :a  b4    1  1 1    b  2 a     a  b    a  a  b4  a4  b4   a a b     1 a  b  a  a 2b2  1   a2  a4  b4    1   a b2  a2  b2  a b a   1 1   b a b   b  2  a  a b  a b    2    a a   12 a 4) D = 1    :  a  b   1   : b b  b        b b2    :  b  2b a a   a a a b  b b a b   5) E =  a  b        a b a b     b a b b   : b    a   www.DeThiThuDaiHoc.com ThuVienDeThi.com  a b  T rang  a b   b :  a    b  a b    GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com 2    13    a b a b     ab   :2 a  b     : 6) F =    b a ab ab  3  a  a   3 ab a3b ab   ab a b  1 ab  ab  b a ab  ab  ab ab  7) G =  ab   : a b a  ab  b  ab a  ab ab  b b  ab   a ab a b a ab  a  ab ab  b a a b    a b a b  8) H =   ab    1   a b  a  b   3 2        a b b   a b a b  a 1   12     1  a  b   a  a 2b2  b   1 a2  b2       2  a b 1 1        a2  b2    a2  b2   a2  b2          2  12  a b  a  2a b  b   1 =  1 1     2 a b  a b      3 1  a  a  8b  a  8a b b 3 9) I =   a    1  a  a  ab  4b  a  a b  4b 3   a    b   a  3 3 a  ab  4b 3 a a a  23 b 1  a  23 b    a  a    a   a  b   a   ab   b    a  a  b   a   ab   b   3 3 3 3 3 2 3  a a 0 B BÀI LUY N Bài 1: Tính giá tr bi u th c sau:  3 1) A =  32     2) B = 7 4  2  4) D =    (0, 2)0,75    Bài 2: 5) E =        1    3) C =    :  :  :  3.2 4.3             23 2 (18)7 24.(50)3 (225)4 (4)5 (108) 6) F = n gi n bi u th c sau (gi s bi u th c có ngh a): a 1) A = a a a 2) B = 3 a 3) C = a4  a4 a4  a4  b  1  b2 b2  b  4) D = T rang  a3b a6b www.DeThiThuDaiHoc.com ThuVienDeThi.com 10 3 :10 2  (0, 25)0  10 2 (0, 01)3 ( 1) a 2 1 23.2 1  53.54  (0, 01)2 10 2 2 1 GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com   a  1 LÔGARIT: Gi s bi u th c có ngh a  log a b có ngh a   b   1) log a  5) a 2) log a a  3) log a b  loga c  log a (bc) 4) log a b  log a c  log a b c log a b    log a b   6) log a b  log a b   b  log a b  log a b    log a b.log b a   log a b  log a  b 7) log a b.logb c  log a c   log c  log a c  b log a b +) Lôgarit th p phân : log10 b  log b  lg b +) Lôgarit t nhiên ( lôgarit Nêpe) : log e b  ln b ( e  2, 71828 )  loga b Chú ý: A CÁC VÍ D MINH H A Ví d 1: Tính giá tr bi u th c sau:  1) A = log3 log 4) D =    2  3 2log5 log5 7) G = lg 25 5) E=  49 1 2log2 10) J =  log7  36 27 3) C = log 5.log 25 2) B = log 3.log3 36 e log6 ln3 1  log 27  log125 81 25 8) H = log6 4 log8 2  27 log9 2 log8 27 0,25 0,5log9 11) K = log (log 8) 13) M  log 2.log 3.log 4.log 5.log 6.log 14) N  lg(tan10 )  lg(tan 20 )   lg(tan 880 )  lg(tan 890 ) Gi i:  1) A = log log 2) B = log 3) C = log 5.log 25 4) D = 5) E   9    1 2  log  log   log    log  log 32  2 6 3  22  3.log3 36  log 2log5 36  log 62 62  15  3  log 1 5.log 33  (5)    log3 5.log5  27  2  2   33    3log3 1  log 27  log125 81 25 log3 3 5 1  log 1 33  log 34 5   52   log log 36 2log 71  10log99 9) I = lg  81  27      81 12) L = log 2013 log (log 256)  log0,25  log9 (log 64) 6) F = log3 2 1 log5 3 log5 3 5 T rang 1 2log5 5 www.DeThiThuDaiHoc.com ThuVienDeThi.com log5 32  5.5  5.9  45 GV: THANH TÙNG 6) F = log 3 2  log 32  7) G = lg 25  27 0947141139 – 0925509968 log9 2 log8 27  www.MATHVN.com  log 3 2  log 32   3  2log   log  3    log5  49 log7 e ln http://www.facebook.com/giaidaptoancap3  3    log 2 2  23 log3 log       log 33    log 3   23     log 1  2  1   3 2        lg  52  log5    72 log7     lg  5log5 62  7log7 82           lg 62  82   lg102     1 log6 8) H = log8 4    10log99  32 log3    22  log log 36 2log 71 9) I = lg  81  27    lg       log 54 log 63 log 71   lg  3  3  3   lg   1 2log 10) J   36 log6 0,250,5log9  81  log  34  log3 62  99  log3    33 log 62 log 82  99   82  99  2log 71  3    54  63  71  lg  29  71  lg100    22  1 2log  2 22 4log 2 6    62 log6 log6  log3 0,25  log    34     3 7 11) K = log (log 8)  log  log 23   log 3    12) L = log 2013 log (log 256)  log0,25  log9 (log 64)   log 2013 log (log 28 )  log 0,25 log9 (log 43 )   1 3 1  log 2013  log  log 0,25  log9 3   log 2013  log 22 23  log   log 2013     log 2013    2   2   2   13) M  log 2.log 3.log 4.log 5.log 6.log  log 7.log 6.log 5.log 4.log 3.log  log  14) N  lg(tan10 )  lg(tan 20 )   lg(tan 880 )  lg(tan 890 )  lg(tan10 )  lg(tan 89 )   lg(tan 20 )  lg(tan 880 )    lg(tan 44 )  lg(tan 460 )   lg(tan 450 )  lg  tan10.tan 890   lg  tan 20.tan 880    lg  tan 44 0.tan 46   lg  tan 450   lg  tan10.cot10   lg  tan 20.cot 20    lg  tan 440.cot 440   lg  tan 450   lg1  lg1   lg1  lg1       Ví d 2: n gi n bi u th c sau (gi s bi u th c đ u có ngh a):  1) A = log a a a a 3) C = lg log a3 a a  2) B =  log a b  log b a   log a b  log ab b  log b a  4) D = log  2a    log a  a log a  log2 a 1 log a  3log a  1  T rang www.DeThiThuDaiHoc.com ThuVienDeThi.com  log 22 a GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com Gi i:  1) A = log a a 24 a 35  16  14      14   log a  a  a    log a  a a   log a a               a  log a  a a a     2) B   log a b  logb a   log a b  log ab b  log b a    log a b     log a b.log b a  log ab b.log b a   log a b    log a b  1 log 2a b  log a b   1  log ab a    log a b log a b  log a b  1  log a b   1   1  log a ab     log a b  1 log a b   log b    log b 1   1  a a log a b  log a b   log a b  3) C = lg log a a  lg log a3 4) D = a.a  5 1  lg log  a   lg log 3 a 10  lg   lg  1 a 10 10  a3  a3 log  2a    log a  a    log a log a log a 1 log a  3log a  1    2log a  log a  log a  1  8log 22 a 3log a  3log a  1   log 22 a  3log a  1 log 22 a  3log a  Ví d 3: Cho log a b  ; log a c  2 Tính log a x bi t: 1) x  a 3b c 2) x  a4 b c3 3) x  log a a bc Gi i: Cho log a b  ; log a c  2 1) V i x  a 3b c   1  log a x  log a a 3b c  log a a  log a b  log a c   2log a b  log a c   2.3   2   2 2) V i x  a4 b c3  log a x  log a 3) V i x  log a a4 b 1 a b  log  log  log a c   log a b  3log a c     2   1 a a c 3 a bc a c b3  log a x  log a a bc a cb  log a a 2b c 1 a b 3c  log a a3c 8  log a a  log a b  log a c b3  5  log a b  log a c     2   8 3 3 T rang www.DeThiThuDaiHoc.com ThuVienDeThi.com a cb3 GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com Ví d 4: Hãy bi u di n theo a ( ho c c b ho c c) bi u th c sau: 1) A = log 20 0,16 bi t log  a 2) B = log 25 15 bi t log15  a   3) C = log 40 bi t log    a  5 5) E = log 35 28 bi t log14  a log14  b 4) D = log (21, 6) bi t log  a log  b 6) F = log 25 24 bi t log 15  a log12 18  b 49 7) G = log125 30 bi t lg  a lg  b 8) H = log bi t log 25  a log  b 9) I = log140 63 bi t log  a ; log3  b ; log  c 10) J = log 35 bi t log 27  a ; log8  b ; log  c Gi i: 1) A = log 20 0,16 bi t log  a log   3log   3a Ta có: A = log 20 0, 04  log 20  log (2 2.5)  log  a 2) B = log 25 15 bi t log15  a Ta có: a  log15  log3  3.5  1 1 a  log3    a a  log3 1 a 1 log 15 log (3.5)  log a      B = log 25 15   a 1  a  log 25 log 52 2log a   3) C = log 40 bi t log    a  5  3a   Ta có: a  log    log   log  log    5 22 3a 3 log 40 log (23.5)  log   3a  C = log 40     log 10 log (2.5)  log  3a  3a 4) D = log (21, 6) bi t log  a log  b 2.33 log  21,    3log  log   3a  b  Ta có: D = log (21, 6)  log log  2.3  log 1 a log 5) E = log35 28 bi t log14  a log14  b Ta có: a  log14  b  log14  log7  2.7   1 1 a  log     log a a log log  1 a  b   log  b(1  log 2)  b 1   log  7.2   log a  a  log 28 log (7.2 )  log  E = log 35 28     log 35 log (7.5)  log 1 a a  2a b ab 1 a  T rang www.DeThiThuDaiHoc.com ThuVienDeThi.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com 6) F = log 25 24 bi t log 15  a log12 18  b log 18 log  2.3   2log (2) b  log12 18    log 12 log  22.3  log log 15 log  log (1) Ta có: a  log 15   log  log  2b b2  2b 2b  a  ab  T (1)  log  a 1  log 3  log   a  1 log  a   a  1 a b2 b2 b  3 b 5 log 24 log    log b2  F = log 25 24         b a ab log 25 log 2log 4b  2a  2ab  b2 T (2)  b (2  log 3)   log  (b  2) log   2b  log  7) G = log125 30 bi t lg  a lg  b lg 30 lg  3.10   lg 1 a  10     Ta có: b  lg  lg     lg  lg   b  G = log125 30  lg125 3lg 1  b  lg    5 49 bi t log 25  a log  b log log log Ta có: a  log 25     log  ab log 25 log 2b 8) H = log 49 72 log 49   log   2.2 ab   12ab   H = log  1 b log b log log 3 9) I = log140 63 bi t log  a ; log  b ; log  c log Ta có : log  log 3.log  ab  I = log140 63  log  32.7  log 63 log  log 2a  c    log 140 log  5.7   log  log  ab  c 10) J = log 35 bi t log 27  a ; log  b ; log  c log log log   a  log 27  log 27  3log  3c  log  3ac log 35 log  log 3ac  3b  2  J = log 35     log  log 1 c b  log  log  log  log  3b  log Ví d 5: Tính giá tr c a bi u th c: 1) A = log b a b bi t log a b  a 2) B = a4  a4 a a T rang  b  2  b2 b b  www.DeThiThuDaiHoc.com ThuVienDeThi.com bi t a  2013  ; b   2012 GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com Gi i: 1) A = log A = log  b bi t log a b  a b  log a b a b a 1  3    log a b  2) B = a4  a4 a a B=  b  4 a a a a   b a a2  3log b b a  log a b a  1    log b a  2   1   log a b  1 2  log a b log a b  1 3      log a b   log a b   log a b   log a b   3    b b a  b2 b b b  log  2  bi t a  2013  ; b   2012 b b b  2  a 1  a 2   b 1  b   a 1  a   b  2 1  b  1  a   1  b   a  b  2013    2012  Ví d 6: Ch ng minh r ng (v i gi thi t bi u th c đ u có ngh a): log a b  log a c 2a  3b lg a  lg b log c log a 3) N u 4a  9b  4ab lg 2) a b  c b 1) log ac (bc)    log a c 4) N u a  4b  12ab log 2013 (a  2b)  2log 2013  (log 2013 a  log 2013 b) 1 lg b ; b  10 5) N u a  10 b c 7) log 2a  log 2a c b 1 lg c 6) N u a  log12 18 ; b  log 24 54 thì: ab  5(a  b)  c a b 8) Trong s : log 2a ; log 2b log 2c ln có nh t m t s l n h n b c a b c a c  10 Gi i: 1) log ac (bc)  2) a logb c  log a b  log a c  log a c log a c b t a Ta có: log 3) N u 4a  9b  4ab lg 1 lg a bc log a  bc  log a b  log a c log a bc    log ac (bc ) (đpcm)  log a c log a a  log a c log a  ac  a logb c  a t log a log c  a b  c b (đpcm) t  t log log log a a a c  bt  c b  bt b  b b  a t 2a  3b lg a  lg b  Ta có: 4a  9b  ab  a  12ab  9b  16ab   2a  3b  2 2  2a  3b   16ab     ab   2 2a  3b a  3b lg a  lg b  a  3b  (đpcm)  lg   lg a  lg b  lg    lg  ab   lg 4   T rang 10 www.DeThiThuDaiHoc.com ThuVienDeThi.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com 4) N u a  4b  12ab log 2013 ( a  2b)  log 2013  (log 2013 a  log 2013 b) 2 2  a  2b  Ta có: a  4b  12 ab  a  4ab  4b  16ab   a  2b   16 ab     ab    a  2b   log 2013    log 2013  ab    log 2013  a  2b   2log 2013   log 2013 a  log 2013 b    log 2013 ( a  2b)  log 2013  (log 2013 a  log 2013 b) (đpcm) 2 5) N u a  10 1 lg b Ta có: a  10 b  10 ; b  10 1 lg b 1 lg c 1 lg a c  10  lg a  lg101lg b  1 lg c  lg b  lg10 1 lg c  1 lg a   lg b     lg b lg a lg a (1) (2)  lg c lg a  1 lg a T (1) (2)    lg c     10lg c  101lg a  c  101lg a (đpcm) lg a  lg c lg a  1  lg a 1 6) N u a  log12 18 ; b  log 24 54 thì: ab  5( a  b)  Ta có: a  log12 18  log 18 log  2.3   2log  2a    a   log    log  log  (1) log 12 log  22.3   log a2 log 54 log  2.3   3log  3b b  log 24 54     b   log    3log  log  b 3 log 24 log    log T (1) (2)  7) log 2a  2a  3b   1  2a  b    1  3b  a    ab  5( a  b)  (đpcm) a  b 3 b c  log 2a c b 2 2 1 b  b  c  c c c   Ta có : log   log a   log a       log a    log a   log a2 c  c   b  b b  b    (đpcm) a 8) Trong ba s : log 2a b c a b ; log 2b log 2c ln có nh t m t s l n h n b c c a a Áp d ng công th c ý 7) ta có: log 2a b c b a c ; log 2b  log 2b  log 2a b c c a b c c ; log 2c a b a  log 2c a b a c a b b c a  b c a  log log 2b log 2c  log 2a log 2b log 2c   log a log b log c   12  b c a c a b  bc a b c a b c a c a c a b  Trong ba s không âm: log 2a ; log 2b log 2c ln có nh t m t s l n h n b c a b c a a b T rang 11 www.DeThiThuDaiHoc.com ThuVienDeThi.com (2) GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com B BÀI LUY N Bài 1: Tính giá tr bi u th c sau: 1) A = log 5 25 4) D = 532log5 7) G = 3) C = log 2) B = log 8.log 25 5) E = log5 1 log9 4  49 log7 2 log2 3 log 2 2log 27 6) F = 4log2  9) I  8) H = log3 6.log8 9.log log 27  125  log 5 10) J = log  log 400  3log 45 3 11) J  (27 log log log 4.log log 4.log 5 log 25 49 log )(81  8log4 )  log16 25.5log5 1  1 log log log 12) K  log  log  27  log 21 16    log tan 12 Bài 2: n gi n bi u th c sau (gi s bi u th c đ u có ngh a): log 1) A = log a b  logb a   log a b  log ab b  logb a 2) B = a3 a.log a a log a a Bài 3: Hãy bi u di n theo a ( ho c c b ho c c) bi u th c sau: 1) A = log 28 bi t log  a 2) B = log 16 bi t log12 27  a 3) C = log 49 32 bi t log 14  a 4) D = log 54 168 bi t log 12  a log12 24  b 121 6) F = log bi t log 49 11  a log2  b 5) E = log 30 1350 bi t log 30  a log 30  b 7) G = log3 135 bi t log  a log  b Bài 4: Tính giá tr c a bi u th c: 1) A = log b ab a bi t log a b  2) B = c log c  log  a a b3c  Bài 5: Ch ng minh r ng (v i gi thi t bi u th c đ u có ngh a): 1) log a c   log a b log ab c 2) N u a  b  c log b c a  log c b a  log c b a.log c b a ab 3) N u a  b  ab log   log a  log b  4) N u a  9b  10 ab log  a  3b   log   log a  log b  T rang 12 www.DeThiThuDaiHoc.com ThuVienDeThi.com bi t log a b  log a c   GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com II O HÀM  a x  '  a x ln a   2)  a u  '  u ' a u ln a   eu  '  u ' e u  x x  e  '  e  x  '   x 1  1)  u  '   u  1 u '   u' n  u '  n n 1 n u      log a x  '  x ln a  u' u'  3)  log a u  '    ln u  '  u ln a u    ln x  '  x  Chú ý : 4)  u v  '  u v ( v ln u ) ' (T ng quát c a (1) (2)) A CÁC VÍ D MINH H A Ví d 1: Tính đ o hàm c a hàm s sau: 1) y  x  x 2) y  e x  e3 x 1  5cos x sin x 3) y   x  x   e x 4) y  ln  x  1  log  x  x  1 5) y  ln x  x4  6) y  log    x4 1 x  ln(2 x  1) ln x  ln x 9) y  7) y  log  8) y    x  x  ln x 2x 1   ex  e x 11) y  ln x   x  log (sin x) 12) y  log x (2 x  1) 10) y  x  x 13) y  (2 x  1) x 1 e e   Gi i: 1 1) y  x  x  y'  3 x x x 2 x 1  x x  x  (áp d ng công th c  u  '  n uu' n n n 1 ) 2) y  e x  e3 x 1  5cos x sin x  y'  ex ex  3.e3x 1  ( sin x  cos x).5cos x sin x ln  ex  3e3 x 1  (sin x  cos x).5cos x sin x ln 3) y   x  x   e x  y '   x   e x   x  x   e x  x 2e x 4) y  ln  x  1  log  x  x  1  y'  2x 2x 1  2 x   x  x  1 ln 2 x  5) y  ln x  y '  3 x ln x 3 ln x 2.(ln x)  x  4   x4  6) y  log    y'  x4    x4  x  16  ln   ln  x4 T rang 13 www.DeThiThuDaiHoc.com ThuVienDeThi.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com  1 x  7) y  log   x    8) y  ln x  ln x  x  ln x  1  x  1 x  1 x  1 x x x   1  x x   4x  y'     1 x 1 x 1 x 2x ln10 ln10 x ln10 x x x 1 x  ln x  1  ln x   1  ln x   ln x 2 x  y'  x  x   2 x x x 1  ln x  1  ln x  '   x  ln10 2x 1  ln  x  1  ln  x  1 ln(2 x  1) 2x 1 x  9) y   y'   2x 1 2x 1  x  1 x  ex  e x 10) y  x  x e e e  y'   x  e x    e x  e  x  e x e  x 2  1  e x  e x  x  x  cos x   cot x ln x   x sin x ln  x2 ln x  ln  x  1 x ln x  x  ln x  ln  x  1     x 12) y  log x (2 x  1)   y '  2x 1  2 ln x ln x x  x  1 ln x 11) y  ln x   x  log (sin x ) 13) y  (2 x  1) x 1  ln y  ln  x  1   y'  x 1   x  1 ln  x  1 (*)  x  1 y'  ln  x  1  y 2x 1 (đ o hàm v c a (*) )   x  1  x 1  y '  ln  x  1    x  1 2x 1   Ví d 2: Ch ng minh đ ng th c sau: 1) y '' y ' y  v i y  e  x sin x 1  x  ln x  ln x 5) x y '  x y  v i y  x (1  ln x) 3) xy '  y ( y ln x  1) v i y    2) xy '  e y v i y  ln    1 x  4) y  xy ' x y ''  v i y  sin(ln x )  cos(ln x ) 6) y  xy ' ln y ' v i y  x2  x x   ln x  x  2 Gi i: 1) y '' y ' y  v i y  e  x sin x  y '  e  x sin x  e  x cos x  e  x  cos x  sin x  Ta có: y  e sin x   x x x  y ''  e  cos x  sin x   e   sin x  cos x   2e cos x x  y '' y ' y  2e x cos x  2e  x  cos x  sin x   2e x sin x  (đpcm)   2) xy '  e y v i y  ln    1 x  T rang 14 www.DeThiThuDaiHoc.com ThuVienDeThi.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com    Ta có: y  ln   y' 1 x  3) xy '  y ( y ln x  1) v i y  1  x  1 x x  xy '  1   1 x 1 x 1     xy '  e y (đpcm)   ln  1 x e y  e  1 x    1 x  1  1    1  x   x  Ta có: y   y' 2  x  ln x 1  x  ln x  x 1  x  ln x  1  x  ln x  1  x    xy '  1  x  ln x     xy '  y( y ln x  1) (đpcm)   x   ln    y y ln x    1       x  ln x   x  ln x  1  x  ln x 2  4) y  xy ' x y ''  v i y  sin(ln x )  cos(ln x ) 1 cos(ln x)  sin(ln x)   y '  x cos(ln x)  x sin(ln x)  x  Ta có: y  sin(ln x)  cos(ln x)        x sin(ln x)  x cos(ln x)  x   cos(ln x)  sin(ln x)  2cos(ln x)  y ''   x2 x2   y  xy ' x y ''  sin(ln x)  cos(ln x)  cos(ln x)  sin(ln x)  cos(ln x)  (đpcm) 5) x y '  x y  v i y  Ta có: y '   ln x x (1  ln x)    x 1  ln x   1  ln x  x     1  ln x  x  x   x 1  ln x    ln x  ln x 1  ln x  x 1  ln x    ln x x 1  ln x   1  ln x   ln x 2 2 x y '  x  2 x 1  ln x   1  ln x    x y '  x y  (đpcm) 2 2 1  ln x   2 1  ln x  1  ln x      1 x y 1  x 2 x (1  ln x) (1  ln x) 1  ln x   x2  x x   ln x  x  2 x 1 x2  1 x  x  x2  Ta có: y '  x   x   x  2 x2   x  x2  6) y  xy ' ln y ' v i y  =x 2x2 1 x 1    x  x2 1 x  x 1    x 1  x x2  x 1   x 1   x  x  1 x 1   x  x2 1  xy ' ln y '  x x  x   ln x  x   x  x x   ln x  x     y  xy ' ln y ' (đpcm) 2 y  x  x x   ln x  x   x  x x   ln x  x    T rang 15 www.DeThiThuDaiHoc.com ThuVienDeThi.com  GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com B BÀI LUY N Bài 1: Tính đ o hàm c a hàm s sau: x 1 3) y  xe 1) y  x  x  2) y  (2 x  1)e 5) y  e3 x 1.cos x 6) y  (sin x  cos x)e x 2x x2  x  ln( x  1) 8) y  x 1 4) y  7) y  1  ln x  ln x 11) y  ( x  x ) log (2 x  e  x  x ) 12) y  ln sin(3x  1)  10) y  x ln x  9) y  e x ln(cos x) x x Bài 2: Ch ng minh đ ng th c sau:  x2 1) xy '  (1  x ) y v i y  xe 3) y ''' 13 y ' 12 y  v i y  e4 x  2e  x 5) y '' y ' y  e x v i y  x e x 2 2) y ' y  e x v i y  ( x  1)e x 4) y 'cos x  y sin x  y ''  v i y  esin x xy 6) y '   e x ( x  1) v i y  ( x  1)(e x  2013) x 1 III GI I H N ex 1 1 x 0 x ln(1  x) 1 x 0 x x  1 1) lim     lim 1  x  x  e x  x 0  x 3) lim 2) lim A VÍ D MINH H A Ví d : Tính gi i h n sau: x 1  x 1  2) lim   x  x    x e 1 7) lim x 0 x  1 x  x  1) lim   x   x   x 3 e  e3 6) lim x 0 2x e x  e x 4) lim x  sin x ln x  3) lim x e x  e 8) lim x 0 ln(1  x) tan x 9) lim x 10 lg x  x  10 Gi i:  x  1) L1  lim   x   x   x x   x   Ta có: L1  lim   lim 1    x   x   x    x   1  L1  lim 1   t   t  1 t   lim t  x t:  1 t  1 1    t  lim t   x  (1  t ) 1   1 x t  x  ; t      1      t  t  T rang 16 t  1  1.e e www.DeThiThuDaiHoc.com ThuVienDeThi.com ln(1  x ) 5) lim x 0 2x GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com  x 1  2) L2  lim   x  x    x 1    lim 1   x   x2    x  3t   t x2 t  x  ; t   x 1  1  L2  lim    x   t 3 t    1   1   lim  1    1     e  e6 x    t    t   t 3 ln x  x e x  e 3) L3  lim x  t  e ln(t  e)  ln e t t  xe   L3  lim  lim t 0 t 0 t  x  e; t    t  te ln    ln      e   lim   e    t 0 t t e e    e ex  x 2x 2x 2x e x  e x e  lim e   lim e   lim e   1  4) L4  lim  lim x 0 sin x x  sin x x  e x sin x x0 sin x x x0 x sin x e x 1 x .e x 2x  ln(1  x ) x  ln(1  x ) ln(1  x3 )  lim  lim    1.0  x x x 0 2x 2 x3  x3 x 5) L5  lim    e5 x    e5 x  5e3  e5 x 3  e3 5e3 5e3  lim    6) L6  lim e   lim   x 0 x0 x 0 2x 2 x    x       e x  1 x    ex  ex 1 7) L7  lim  lim  lim  x 0 x x x   x  x   x     1.0       ln(1  x)  ln(1  x) ln(1  x) ln(1  x) 8) L8  lim  lim  lim  lim  cos x   .2.1  x 0 x0 x0 x 0 sin x sin x sin x tan x  2x  x x 2cos x x cos x   lg x  9) L9  lim x 10 x  10    t   t  10  lg  lg       x  t  10 lg(t  10)  lg10 10  10    L9  lim  lim   lim    t: t  x  10   t 0 t 0 t 0 t t t 10  10   x  10; t    10 B BÀI LUY N Tính gi i h n sau:  1 1) lim 1   x   x x 1 x e2 x  x 0 3x 2) lim ex  e x 1 x  3) lim T rang 17 esin x  esin x x 0 x 4) lim www.DeThiThuDaiHoc.com ThuVienDeThi.com   5) lim x  e x  1 x    GV: THANH TÙNG IV TÍNH 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com N I U VÀ CÁC B T NG TH C *) Tính đ n u: *) Các b t đ ng th c: a b  a c 1)  a    bc log a b  log a c  0  a   0  a    0  b  b  log a b    3) log a b    a  a     b   0  b  a b  a c 2) a    bc log a b  log a c    a  b    4)  a  b      a  b    A CÁC VÍ D MINH H A Ví d 1: Khơng dùng b ng s máy tính so sánh c p s sau: 1)  0,01    2)   2 1000 4) log3 log 7) 0, 0, 8) 626 13) log 2011 2012 log 2012 2013     2 3)  5 6)   7 5) log log3 11 2log 5 log 10) 2 2  3 1 9) log 0,4 log 0,2 0,34 1 log 80 15  15) log log10 11 11) 3log 1,1 log 0,99 12) log 14) log13 150 log17 290 Gi i: 1)  0, 01   2)   2  2 1000     2  0,01   102      Ta có:    3  10 ; 1000  103    Ta có:  2     2 2     2   0, 01   1000 4) log3 log 1 4 1       ; Ta có:   1  1 0    1;   Ta có: log  log3   log 2  log  log3  log 5) log log3 11 Ta có: log  log   log3  log3 11  log  log 11 3)  3 1   T rang 18  www.DeThiThuDaiHoc.com ThuVienDeThi.com  3 1 GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 www.MATHVN.com 5 6)   7 7) 0, 8)   5  0     5 Ta có:        1 7 0      và 0,   2  2    36 36       Ta có:       0,  1       Ta có:  3  10) Ta có:  23     3   3  32  3 2 3  log 0,4  log0,2 0,34 626 2log 5 log 2 2 log 25log 2 log 25 25 625 626     9 2log log  626 log6 1,1  30  log 1,1   Ta có:   3log6 1,1  log 0,99 log 0,99  1 log 0,99   11) 3log 1,1 log 0,99 12) log  0,   log 0,4  0  0,  1; Ta có:  0  0,  1;   0,34  log 0,2 0,34  9) log 0,4 log 0,2 0,34 2log  log  0, 1 log 80 2 15   1 log 80  log 31 80  log 80  log 81  1  Ta có:   log  log 1 80 15  log  log 21 15   log 15   log 16   15  13) log 2011 2012 log 2012 2013     Ta ln có : log n  n  1  log n 1  n   v i n  (*) Th t v y : +) Ta có :  n  1  n  n     n  n     log n1  n  1  log n1  n  n    2 hay  log n1 n  log n1  n   (1) +) Áp d ng B T Cauchy ta có : log n1 n  log n1  n    log n1 n.log n1  n   (2) ( (2) không x y d u ''  " log n 1 n  log n1  n   ) +) T (1) (2)   log n1 n.log n1  n     log n 1 n.log n1  n     log n 1  n    log n  n  1  log n 1  n   (đpcm) log n 1 n Áp d ng (*) v i n  2011  log 2011 2012  log 2012 2013 T rang 19 www.DeThiThuDaiHoc.com ThuVienDeThi.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 14) log13 150 log17 290 Ta có: log13 150  log13 169   log17 289  log17 290  log13 150  log17 290 www.MATHVN.com 15) log log10 11 Ta ln có : log a ( a  1)  log a 1 ( a  2) v i  a  (*) Th t v y :… (các b n xem ph n ch ng minh ý 13) ho c cách khác Ví d ý 4) ) Áp d ng liên ti p (*) ta đ c : log  log  log  log  log  log  log 10  log10 11 hay log  log10 11 (đpcm) 1 B=   6 log 3.log15 A 14 log log 0,3 Ví d 2: Xác đ nh d u c a bi u th c sau: log6 2 log 3 31 Gi i: A 5  1;   log  15  1;   log  15   log 3.log15 14 14 0 Ta có: 0   1;   log 0  A 14 5  log log 0,3  7 0  0,  1;   log 0,3   2 log 3.log15 14 log log 0,3 1 B=   6 log6 2 log 1   6 31 3 log6  log Ta có: log  log  log  log  log 1   6 log6 125 124 1    Mà: 8 6   61  log6 log6  log  6 log6  5 125 M t khác:    3 2 31 1  B=   6 log6  log 3 31 124  31 0 Ví d 3: S p x p s sau theo th t gi m d n: 1) ;  23  log 64  log9 ; ; 23 2) log ; log  ; log 4 ; log Gi i: 1) ;  23  Ta có: log64  22 ; Mà:  log9 ; ; 23 log 23 64      2 T (1) (2) :  1 log 22 log9   2  23 M t khác:   2 log  3log 2  2    hay 4   26   1 log9  2     ; 23  23 4 log3 log3  23     2  26  2  23 log64 2 log log64 (1) (2)  th t gi m d n là: T rang 20 log www.DeThiThuDaiHoc.com ThuVienDeThi.com ;  ; log64   ; 2

Ngày đăng: 29/03/2022, 00:40

w