1. Trang chủ
  2. » Luận Văn - Báo Cáo

Developmet of bio based aviation fuels the production process, properties, soot characteristics and gas turbine engine tests

147 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 147
Dung lượng 1,96 MB

Nội dung

DEVELOPMENT OF BIO-BASED AVIATION FUELS: THE PRODUCTION PROCESS, PROPERTIES, SOOT CHARACTERISTICS AND GAS TURBINE ENGINE TESTS DISSERTATION Submitted in partial fulfillment of the requirements of doctoral degree at Institut Teknologi Bandung By HONG DUC THONG NIM: 33110002 Study Program of Mechanical Engineering Faculty of Mechanical and Aerospace Engineering INSTITUT TEKNOLOGI BANDUNG 2014 DEVELOPMENT OF BIO-BASED AVIATION FUELS: THE PRODUCTION PROCESS, PROPERTIES, SOOT CHARACTERISTICS AND GAS TURBINE ENGINE TESTS By Hong Duc Thong NIM: 33110002 Graduate Program of Mechanical Engineering Faculty of Mechanical and Aerospace Engineering Institut Teknologi Bandung Approval of Supervisory Committee Supervisor: Co-Supervisor: _ (Dr Ir Abdurrachim Halim) (Dr Ir Tatang H Soerawidjaja) Co-Supervisor: Co-Supervisor: _ (Dr Ir Iman K Reksowardojo) (Prof Dr Osamu Fujita) i ABSTRAK PENGEMBANGAN BAHAN BAKAR AVIASI BERBASIS NABATI (BIO): PROSES PRODUKSI, KARAKTERISTIK BAHAN BAKAR, JELAGA DAN PENGUJIAAN PADA MOTOR TURBIN GAS oleh Hong Duc Thong NIM: 33110002 Tingginya harga minyak bumi, ketidakstabilan pasar energi internasional, keamanaan pasokan energi nasional, berpengaruh negatif terhadap industri penerbangan serta perdagangan emisi Uni-Eropa telah menstimulasi penggunaan bahan bakar alternatif dalam industri penerbangan secara signifikan Berdasarkan masalah-masalah diatas, disertasi ini fokus kepada penelitian awal pengembangan bio-fuel dalam bidang penerbangan untuk Indonesia dan negara-negara tropis Penelitian ini mengusulkan proses produksi bio-jet paraffins sesuai dengan kondisi situasi sosial ekonomi, teknologi produksi biofuel masa kini, dan ketersediaan bahan baku di Indonesia maupun di negara tropis lainnya Rute proses pencampuran bio-kerosene hasil pencampuran dari bio-jet paraffin dan fossil kerosene (commercial Jet A-1) juga ditampilkan Dari usulan penelitian ini dua prototipe bio-paraffins (Bio-P1 dan Bio-JP2) diproduksi di Indonesia untuk dibuat bio-kerosene Penelitian teoritik dan eksperimen telah dilakukan untuk mengevaluasi dan mengidentifikasi sifat kritis dari bio-kerosene: titik didih, titik beku, nilai kalor bawah, densitas, titik nyala dan viskositas untuk memastikan masuk dalam kriteria standar ASTM untuk bahan bakar jet Sebagai langkah awal prosedur untuk menerapkan bahan bakar dalam penggunaan bidang penerbangan, adalah melakukan penelitian karakteristik jelaga, prestasi, dan emisi dari BK5 pada motor turbin gas, yang merupakan ii campuran dari 5% vol Bio-P1 dan 95% vol commercial Jet A-1, untuk dibandingkan dengan referensi Jet A-1 Pendekatan yang berguna untuk memahami kencenderungan jelaga dari aviation bio paraffin Bio P-1 adalah dengan membandingkan dengan bahan bakar jet surrogate Oleh karena itu, pertama yang dilakukan paraffins/propylbenzene adalah percobaan (Bio-P1/PB) aviasi untuk campuran dan bio- campuran dodecane/propylbenzene (Do/PB), yang merupakan campuran dari masing-masing 0, 10, 20, 25% vol propylbenzene dalam aviation bio-paraffins dan dodecane Metode light extinction diadopsi untuk menentukan volume total dari jelaga (TSVs), yang terdapat pada co-annular smoke-free laminar diffusion wick-fed flames, sebagai fungsi dari tinggi nyala api dan tingkat konsumsi bahan bakar (FMCR) Selanjutnya, model empiris dibuat untuk memprediksi TSVs dari campuran Do/PB dan campuran Bio-P/PB sebagai fungsi dari dua variabel dari FMCR dan konsentrasi dari propylbenzene Kemudian, karateristik dari jelaga BK5 dan Jet A-1 diobservasi sebagai perbandingan Terakhir, prestasi, emisi dari BK5 dan Jet A-1 komersial di dalam Rover 1S/60 gas turbine engine dilaporkan di dalam penelitian Disertasi ini telah memperoleh beberapa temuan dan kontribusi penting sebagai berikut: dapat dicampurkan secara langsung dengan 5% volume dari BioP1 dan 10% volume dari Bio-JP2 dengan Jet A-1 komersial untuk membentuk bio-kerosene sebagai bahan bakar alternatif untuk pesawat terbang tanpa merancang ulang sistem bahan bakar atau infrastruktur pasokan bahan bakar Kegunaan dari bio-paraffin tidak hanya mengurangi siklus CO2, tapi juga mengurangi emisi dari Sulfur oksida (SOx) secara signifikan Aviation Bio-P1 itu sangat mirip dengan dodecane dalam hal karakteristik pembentukan jelaga Dengan kata lain, dodecane dapat menjadi pengganti (surrogate) aviation Bio-P1 Pada FMCRs yang rendah, BK5 dapat menghasilkan TSVs sedikit lebih tinggi dari Jet A-1 Akan tetapi pada saat FMCRs yang tinggi, TSVs dari jet A-1 akan sedikit lebih tinggi dibandingka BK5 Pada penelitian motor turbin gas tidak ada perbedaan yang signifikan antara konsumsi bahan bakar spesifik di Jet A-1 dan BK5 Pembakaran dari BK5 akan mengurangi temperatur masuk turbin, temperatur gas buang, dan emisi HC bila dibandingkan dengan Jet A-1 Pada iii beban yang rendah, BK5 akan menghasilkan emisi NOx dan emisi CO yang lebih rendah bila dibandingkan dengan Jet A-1 Akan tetapi pada beban tinggi kecenderungannya menjadi terbalik, konsentrasi NOx dan CO dari Jet A-1 lebih rendah Dari hasil penelitian ini, tidak diragukan lagi kelayakan untuk mengembangkan proses produksi dari bahan bakar alternatif ini dalam bidang penerbangan di Indonesia dan juga negara-negara tropis lainnya BK5 menghasilkan kinerja yang serupa dan emisi gas buang dan pembentukan jelaga yang kompetitif bila dibandingkan dengan Jet A-1 komersial Hal ini memprediksi bahwa BK5 akan memiliki emisi gas buang dan karakteristik jelaga yang lebih baik dari Jet A-1 pada saat digunakan pada pesawat dengan teknologi turbin gas modern Oleh sebab itu bio-parafin aviasi yang diteliti dapat menggantikan sebagian dari bahan bakar jet berbasis fosil, meskipun campuran dari bio-kerosene harus memenuhi persyaratan dari ASTM untuk menjadi bahan bakar aviasi ketika digunakan di pesawat terbang Hasil ini juga mengindikasikan bahwa diperlukan perbaikan dalam proses produksi dengan menghilangkan komponen dengan temperatur distilasi yang tinggi dari aviation bio-fuel saat ini Kata kunci: Hydroprocessing, bahan bakar nabati, bio-paraffins, biokerosene , kerosin, aviasi, bahan bakar jet, surrogate, jelaga, api difusi, motor turbin gas, performa, emisi gas dan pembakaran iv ABSTRACT DEVELOPMENT OF BIO-BASED AVIATION FUELS: THE PRODUCTION PROCESS, PROPERTIES, SOOT CHARACTERISTICS AND GAS TURBINE ENGINE TESTS By Hong Duc Thong NIM: 33110002 The high cost of crude oil, the volatility of the international energy market, the nation energy supply security, the negative environmental impacts of aviation industry and the European Union Emissions Trading Scheme have been significantly stimulated the use of alternative fuels in the airline industry On the basis of these problems, this dissertation is focused on the preliminary research of development of aviation biofuels for Indonesia and tropical countries The research proposes the production process of bio-jet paraffins according to the conditions of the socioeconomic situations, the current technologies of biofuel production and the available feedstock sources for Indonesia as well as the tropical countries The route of blending process of bio-kerosene which is a mixture of bio-jet paraffins and fossil kerosene (commercial Jet A-1) is also displayed The two prototypes of bio-paraffins (Bio-P1 and Bio-JP2), which were manufactured in Indonesia following the proposed production process, are used for making bio-kerosenes in present research The theoretical and experimental investigations have been carried out to evaluate and identify the critical properties of bio-kerosenes: distillations, freezing point, lower heating value, density, flash point and viscosity to ensure ASTM criteria of jet fuel As a required step of the procedure for applying the fuel to aviation use, soot characteristics, performances and emissions of BK5, which is the blend of 5% vol Bio-P1 and 95% vol commercial Jet A-1, have been investigated to v compare with the reference of Jet A-1 A useful approach in understanding soot propensity of the aviation bio-paraffins of Bio-P1 is to compare with that of jet fuel surrogate Thus, the experiments are firstly performed for aviation bioparaffins/propylbenzene (Bio-P1/PB) mixtures and dodecane/propylbenzene (Do/PB) mixtures, which are the blends of 0, 10, 20, 25% vol propylbenzene in aviation bio-paraffins and dodecane, respectively A light extinction method is adopted to determine the total soot volumes (TSVs), which exist in co-annular smoke-free laminar diffusion wick-fed flames, as a function of flame height and fuel mass consumption rate (FMCR) Furthermore, the empirical models are built to predict TSVs of Do/PB mixtures and Bio-P/PB mixtures as the function of two variables of FMCR and concentration of propylbenzene Then, soot characteristics of BK5 and Jet A-1 are observed for comparison Finally, performances, emissions of BK5 and commercial Jet A-1 in a Rover 1S/60 gas turbine engine are reported in the research The dissertation has gained some important findings and contributions as follows: It can be blended directly 5% volume of Bio-P1 or 10% volume of BioJP2 to commercial Jet A-1 to form bio-kerosene as an alternative fuel for aircraft without redesigning fuel system or fuel supply infrastructure The use of these bio-paraffins not only reduces CO2 lifecycle but also significantly decreases emissions of sulfur compounds (SOx) Aviation Bio-P1 is very similar to dodecane in terms of soot formation characteristics In other words, dodecane can be a proper surrogate to the aviation Bio-P1 At low FMCRs, BK5 produces slightly higher TSVs than Jet A-1 In contrast, at high FMCRs, TSVs of Jet A-1 are slightly higher than those of its counterparts There is no obvious difference in brake specific fuel consumption between Jet A-1 and BK5 Combustion of BK5 reduces turbine inlet temperature, exhaust gas temperature and HC emissions in comparison with Jet A-1 In the low loads, BK5 produces less NOx and CO emissions than its counterpart The trends, however, are expressed reversely at the high load range, the lower NOx and CO concentrations are obtained for Jet A-1 In summary, with the achievements of this research we can conclude that it is no doubt about the feasibility for developing a production process of aviation vi alternative fuels for Indonesia as well as the tropical countries BK5 produces similar performance and competitive gaseous emissions and soot formation against commercial Jet A-1 It is predicted that BK5 has better exhaust gas emissions and soot characteristics than Jet A-1 when burning in modern aircraft engine It obviously can replace a part of fossil-based jet fuel by aviation bioparaffins, however, the blend of bio-kerosene must to satisfy requirements of ASTM for aviation fuel when using for aircrafts The results also indicate that it should be improved the production process by liquidating the high distillation temperature components of current aviation biofuel Keywords: Hydroprocessing, biofuel, bio-paraffins, bio-kerosene, kerosene, aviation, jet fuel, surrogate, soot formation, diffusion flame, gas turbine engine, performance, combustion vii gaseous emissions and For my beloved viii GUIDE TO DISSERTATION USE The unpublished dissertation is listed and available at the Institut Teknologi Bandung Library, and is opened to public in which the copyright is retained by the author adhering to the regulation of intellectual property rights at Institut Teknologi Bandung It is allowed to write down the references The citation and following the common practice to properly cite the source The publication and reproduction of dissertation (whole or in part) should be made with the permission of the Dean of Graduate School, Institut Teknologi Bandung ix Nov 2011 Continental Airlines Boeing 737-800 Algae United/Continental flew a biofuel flight from IAH to ORD on algae jet fuel supplied by Solazyme The fuel was partially derived from genetically modified algae that feed on plant waste and produce oil It was the first biofuel-powered air service in the US16 Nov 2011 Alaska Airlines Boeing 737 and Bombardier Q400 Algae Alaska Airlines and its sister carrier, Horizon Air, converted 75 flights on their schedules to run on a fuel mixture of 80% kerosene and 20% biofuel derived from used cooking oil The biofuel was made by Dynamic Fuels, a joint venture of Tyson Foods and Syntroleum Corp17 Jan 2012 Etihad Airways Boeing 777-300ER Vegetable Cooking Oil Etihad Airways conducted a biofuel flight from Abu Dhabi to Seattle using a combination of traditional jet fuel and fuel based on recycled vegetable cooking oil18 Carinata First jet to fly on 100% biofuels that meet petroleum specifications without blending Fuel was produced by Applied Research Associates (ARA) and Chevron Lummus Global (CLG) from carinata oil supplied by Agrisoma Biosciences19 Oct 2012 NRC Dassault Falcon 20 16 http://articles.latimes.com/2011/nov/11/business/la-fi-biofuel-airlines-20111111 17 http://splash.alaskasworld.com/Newsroom/ASNews/ASstories/AS_20111107_005216.asp 18 http://atwonline.com/operations/etihad-conducts-seattle-abu-dhabi-biofuel-flight 19 http://www.aero-news.net/index.cfm?do=main.textpost&id=a3309cef-59ee-4742-8f24-bb7d39a86cf8 111 A Commercial flights Date Operator Platform Biofuel Notes Jun 2011 KLM Boeing 737-800 Used Cooking Oil KLM flew the world's first commercial biofuel flight, carrying 171 passengers from Amsterdam to Paris20 Jul 2011 Lufthansa Airbus A321 Jatropha, Camelina Plants and Animal Fats First German commercial biofuel's flight and the start of month regular series of flights from Hamburg to Frankfurt with one of the two engines use biofuel21 It officially ends at January 12, 2012 with a flight from Frankfurt to Washington and would not take biofuel further unless the biofuel was more widely produced22 Jul 2011 Finnair Airbus A319 Used Cooking Oil The 1,500 km journey between Amsterdam and Helsinki was fuelled with a mix of 50 per cent biofuel derived from used cooking oil and 50 per cent conventional jet fuel23 Jul 2011 Interjet Airbus A320 Jatropha Flight was powered by 27% jatropha between Mexico City and Tuxtla Gutierrez24 20 http://www.avweb.com/avwebflash/news/KLM_biofuel_kerosene_blend_amsterdam_paris_first_flight_cost_204903-1.html 21 http://www.dlr.de/en/desktopdefault.aspx/tabid-6216/10226_read-27961/ 22 http://english.kompas.com/read/2012/01/12/07124430/Lufthansa.Wraps.up.Biofuel.Test.on.German.Flights 23 http://www.greenaironline.com/news.php?viewStory=1300 24 http://www.flightglobal.com/news/articles/mexicos-interjet-conducts-commercial-biofuel-flight-359912/ 112 Aug 2011 AeroMexico Oct 2011 Thomson Airways Nov 2011 Continental Airlines Mar 2013 KLM Jatropha Aeromexico flew the world's first trans-Atlantic revenue flight, from Mexico City to Madrid with passengers 25 Boeing 757-200 Used Cooking Oil Thomson flew the UK's first commercial biofuel flight from Birmingham Airport on one engine using biofuel from used cooking oil, supplied by SkyNRG26 Boeing 737-800 Algae United/Continental flew biofuel flight from IAH to ORD on algae jet fuel, which supplied by Solazyme27 Boeing 777-200 Boeing 777-206ER Used Cooking Oil KLM begins weekly flights by a Boeing 777-200 between John F Kennedy Airport in New York City, USA and supplied by SkyNRG28 25 http://www.fedre.org/en/content/first-transcontinental-flight-aviation-history-use-biofuel 26 http://www.breakingtravelnews.com/news/article/thomson-airways-operates-britains-first-biofuel-flight/ 27 www.latimes.com/business/la-fi-biofuel-airlines-20111111,0,3609127.story 28 https://www.klmtakescare.com/en/content/weekly-flight-using-sustainable-biofuel 113 Appendix B: REQUIREMENTS AND STANDARDS OF JET FUEL B What Is Aviation Jet Fuel? Aviation fuel is a specialized type of fuel used to power aircraft It is generally of a higher quality than similar fuels used in less critical applications Aviation fuels available for aircraft can be divided into two classes: aviation gasoline and jet fuel (turbine fuel) The aviation fuel in commercial uses nowadays consists of hydrocarbons derived from petroleum B.1.1 Aviation Gasoline Aviation Gasoline used in engines with spark plugs (piston engines and Wankel rotary engines) This fuel is mainly used in individual aircrafts B.1.2 Jet Fuel (or Turbine Fuel) Jet fuel or turbine fuel is used in gas turbine engines (turbojet, turbofan and turboprop) Jet fuel is used in large aircraft operated typically by airlines, military and large corporate aircraft Jet fuel is a mixture of a large number of different hydrocarbons The range of their sizes (molecular weights or carbon numbers) is restricted by (the distillation, freezing point, and sometimes naphthalenes and smoke point ) requirements for the product Kerosene-type jet fuel has a carbon number distribution between about and 16 carbon numbers and wide-cut or naphtha-type jet fuel between about and 15 carbon numbers The most commonly used fuels for commercial aviation are Jet A and Jet A1 (kerosene-type jet fuel) which are produced to a standardized international specifications The only other jet fuel commonly used in civilian turbine-engine 114 powered aviation is Jet B (wide-cut or naphtha-type jet fuel) which is used for its enhanced cold-weather performance B Requirements of Jet Fuel29 A potential fuel for the gas turbine engines used in aircraft requires high thermal stability, high heat content, low vapor pressure, good combustion characteristics, good viscosity temperature relationship, high density, high specific heat, uniformity and good handling characteristics The combustion properties of jet fuel are generally controlled using several of the following five tests: smoke point, luminometer number, aromatics content, aniline point and gravity Jet fuel should possess high smoke point, high luminometer number to minimize the temperature rise in combustion zone from flame radiation The radiant heat emitted in the combustion chamber of the engine and its effect on the life of the hot parts of the engine is also important This controlled by the luminometer number and partially by smoke point Table B.1 Fuel properties needed for acceptable performance Fuel performance required Property controlled Combustion Luminosity, hydrocarbon composition, thermal stability, heat of combustion Handling and storage Flash point, viscosity, contamination (water/ surfactant), particulates, microbiological growth Cleanliness during use Trace metals, distillation, sculpture, existent gum, stability 29 Ram Prasad (2000): Petroleum Refining Technology, Khanna Publishers, New Delhi, India 115 Table B.2 Standards of typical properties of jet fuels30 Def Stan 91-91/5 ASTM D1655-04a Aviation Jet Jet A/A-1 Kerosine Kerosine Aromatics, vol %, max 25 25 Sulphur, total wt %, max 0.3 0.3 10% recover, 0C, max 205 205 50% recover, 0C, max report Report 90% recover, 0C, max report Report Final boiling point, 0C, max 300 300 Residue, vol %, max 1.5 1.5 Loss vol %, max 1.5 1.5 Flash point, 0C, 38 38 Property Distillation temperature Density @150C, kg/m3 775 840 775 840 Freezing point, 0C, max 47 40/ 47 Viscosity @ 200C, cSt, max 8 42.8 42.8 Smoke point, mm, 25 25 Or smoke point, mm, 18 18 and naphthalenes, vol %, max 3 Net heat of combustion, MJ/kg, The quality of combustion depends on the carbon/hydrogen ratio of the fuel (fixed by crude source and type of processing) and the flame speed The flame speed is also a function of fuel composition, as well as temperature and oxygen 30 ExxonMobil Aviation (2005): World Jet Fuel Specifications, 2005 Edition, Leatherhead, United Kingdom 116 concentration For ideal burning conditions the lowest possible C/H ratio is require A specification of smoke point is a direct control on combustion The heat of combustion is normally calculated from the aniline point and gravity The properties that control jet fuel quality are listed in table A.1 B Standard of Typical Specifications of Jet Fuel Kingdom (Def Stan 91-91/5, lasted reversion date: 8th Feb 2005) and United State America (ASTM D1655-04a, lasted reversion date: 1st Nov 2004) 117 Appendix C: 1S60 ROVER GAS TURBINE ENGINE Figure C.1 Cross-section of 1S60 ROVER gas turbine engine31 (1): Reverse flow combustion chamber, (2): Compressed air receiver (3): Volute Casing, (4): Temperature control capillary, (5): Turbine, (6): Turbine Nozzle, (7): Heat shield, (8): Impeller, (9): Pressure oil filter, (10): Compressor housing, (11): Air intake, (12): Fuel control unit, (13): Output pinion, (14): Auxiliaries mounting plate, (15): Pressure air reservoir, (16): Simplex burner, (17): Breather pipe, (18): Oil filter 31 ROVER Gas Turbine Engine type 1S/60 Maintenance Manual 118 C.1 Technical Information Compressor: Single stage, centrifugal Turbine: Single stage, axial Combustion chamber: Reverse flow single can with simplex burner nozzle Direction of rotation: Anti-clockwise, viewed from rear Governed speed: 46,000 rev/min Air mass flow: 1.33 lb/sec (0.603 kg/s) Pressure ratio: 2.8:1 Max Intermittent J.P.T.: 6100C (11300F) Max Continuous J.P.T.: 5800C (10760F) Max B.H.P continuous: 60@5800C J.P.T / 150C A.I.T Layout: Single spool with reduction gear Starting: Electric, hand crank or cartridge Ignition: High energy ignitor plug with air/fuel emmulsion pump Lubrication: Wet sump with pressure pump, air or water cooled oil cooler C.2 Standard Operating Conditions Rated speed: 46,000 rev/min Altitude: Sea level Barometric Pressure: 14.7 lb/in2 (1.3 kg/cm2) Air Intake Depression: Nil Exhaust Back Pressure: in Wg (50.80 mm) 119 C.3 Rated Jet Pipe Temperature Jet pipe temperature provides a reference to the power developed by the engine and it is therefore essential that the jet pipe temperature ratings, which are directly related to the engine power ratings, are not exceeded C.3.1 Intermittent Rating The intermittent rating is permissible for periods of up to two hours in any period of twenty-four hours consecutive running Table C.1 1S60 power and jet pipe temperature ratings Ambient Air temp at Intakes Max Continuous Rating Fuel Flow Range at Continuous Rating C BHP JPT 0C - 20 60 440 10.4 - 10 60 475 -5 60 Max Intermittent Rating Fuel Flow Range at Continuous Rating BHP JPT 0C 11.0 74 460 11.4 11.7 10.4 11.0 74 500 11.4 11.7 500 10.4 11.0 74 525 11.4 11.7 60 520 10.4 11.0 74 550 11.4 11.7 +5 60 535 10.4 11.0 74 585 11.4 11.7 + 10 60 560 10.4 11.0 71 595 11.4 11.7 + 15 60 580 10.4 11.0 68 610 11.1 11.6 + 20 55 580 10.2 11.7 60 610 10.6 11.2 + 30 47 580 9.7 10.1 53 610 10.1 10.7 + 40 40 580 8.9 9.3 45 610 9.4 9.9 + 50 34 580 8.3 8.8 40 610 8.9 9.3 + 60 29 580 7.9 8.2 33 610 8.4 8.7 C.3.2 Gal/h Gal/h Altitude Correction Factor The standard continuous and intermittent ratings should be derated by 2.5% for every 1,000 ft (300 m) up to 15,000 ft (4,500 m) For altitude higher than 15,000 ft (4,500 m), the application should be referred to Rover Gas Turbines Ltd 120 Appendix D: DPX FROUNDE HYDRAULIC DYNAMOMETER Figure D.1 Cross-section through casing of DPX Frounde hydraulic dynamometer32 (1): Rotor, (2): Water outlet valve, (3): Water inlet valve, (4): Sluice gates for load control, (5): Water inlet holes in vanes, (6): Casing liners, (7): Casing trunnion bearing, (8): Shaft bearing, (9): Tachometer, (10): Dashpot 32 Froude Consine (1987): Instruction Manual IM 506/4 Froude Hydraulic Dynamometers Type DPX, Worcester, England 121 D.1 Technical Information Maximum BHP 150 at 4000 7500 re/min The length of the balance arm is such that a very convenient formula is used for calculating the B.H.P B.H.P = Where: WxN K W is net weight lifted by the dynamometer N is speed in revolutions per minute K is a constant, K = 4500 122 Appendix E: THE APPARATUSES FOR DOING THE EXPERIMENTS Table E.1 The apparatuses for doing the experiments No Apparatus Parameter of measurement Symbol Thermometer Air inlet temperature TA o - 110 Thermometer Compressor delivery temperature T2 o 80 - 250 Thermometer TIT T3 o 300 900 Thermometer JPT T4 o 250 800 Bourdon pressure gauge M1 Impeller tip pressure P1 Bar Bourdon pressure gauge M2 Compressor delivery pressure P2 Bar Manometer M3 Air depression Manometer M4 Rang C C C C P0 mm 760 Exhaust pressure loss P4 PA mm 760 Manometer M5 Combust pressure loss P2 P3 mm Hg 760 10 Burette Fuel consumption fe Lit 11 Stopwatch Fuel consumption rate t Second 12 Bourdon pressure gauge Oil pressure Poil psig 13 Thermometer Oil temperature Toil 14 Bourdon pressure gauge Water inlet pressure of Dynamometer Pid 15 Thermometer Water outlet temp of Dynamometer Tod 123 PA Unit 99 100 C 110 Bar 10 110 o o C BIOGRAPHY The author, Hong Duc Thong, was born in 1980 in Ho Chi Minh City, Vietnam He received his bachelor degree at Ho Chi Minh City University of Technology (HCMUT) in the year of 2003 After graduation, he worked as an assistant lecturer at Department of Automotive Engineering, Faculty of Transportation Engineering, HCMUT He was admitted directly into the Master's Program at HCMUT in the autumn, 2003 Two years later, he completed the program and got master certificate in 2005 when he also became a lecturer of HCMUT He was married to Huynh Thi My Truc Dao in 2008 and had a Son, Mr Hong Khang Tuan From 2010 until now, he has pursued Doctoral Degree Sandwich Program at Institut Teknologi Bandung, Indonesia and Hokkaido University, Japan through the scholarship from Japanese International Cooperation Agency (JICA) under the project of ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net) 124 LIST OF PUBLICATIONS Hong Duc Thong, Tatang H Soerawidjaja, Iman K Reksowardojo, Osamu Developing Aviation Biofuel for Indonesia: Production Process Experimental and Theoretical Evaluation of Their Blends with Fossil The 5th AUN/SEED Net Regional Conference on Mechanical and Aerospace Technology, Bangkok, 2013 Thong D Hong, Osamu Fujita, Tatang H Soerawidjaja, Iman K th Kerosene The AUN/SEED Net Regional Conference on Energy Engineering, Bandung, 2013 Thong D Hong, Osamu Fujita, Tatang H Soerawidjaja, Iman K Kerosene and It Blend with Aviation BioInternational Journal of Engineering & Technology, IJET-IJENS, 2013, (accepted) Thong D Hong, Tatang H Soerawidjaja, Iman K Reksowardojo, Osamu Developing Aviation Biofuel for the Tropics: Production Process Experimental and Theoretical Journal of Chemical Engineering and Processing: Process Intensification 74, pp 124 130, 2013 http://dx.doi.org/10.1016/j.cep.2013.09.013; Elsevier, IF = 1.950 (2012) Thong D Hong, Osamu Fujita, Tatang H Soerawidjaja, Iman K Reksowardojo, Zarrah Duniani Dodecane, Aviation Bio-Paraffins and Their Blends with Propylbenzene in Journal of Fuel, Elsevier Thong D Hong, Abdurrachim Halim, Tatang H Soerawidjaja, Iman K Reksowardojo, Osamu Fujita, Zarrah Duniani, Emissions of Kerosene and Biointended submitting to Journal of Combustion and Flame, Elsevier 125 ...DEVELOPMENT OF BIO- BASED AVIATION FUELS: THE PRODUCTION PROCESS, PROPERTIES, SOOT CHARACTERISTICS AND GAS TURBINE ENGINE TESTS By Hong Duc Thong NIM: 33110002 Graduate Program of Mechanical Engineering... gas dan pembakaran iv ABSTRACT DEVELOPMENT OF BIO- BASED AVIATION FUELS: THE PRODUCTION PROCESS, PROPERTIES, SOOT CHARACTERISTICS AND GAS TURBINE ENGINE TESTS By Hong Duc Thong NIM: 33110002 The. .. of Aviation Biofuels II.2.1 18 The Benefits and Advantages of Developing Biofuels for Aviation Industry xii 18 II.2.2 Challenges for Aviation Biofuels 20 II.2.3 Price Competitive Ability of Aviation

Ngày đăng: 20/03/2022, 01:02

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w