1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BÁO cáo CHUYÊN đề học PHẦN đồ họa máy TÍNH đề tài CHƯƠNG TRÌNH mô PHỎNG bàn cờ 2d

37 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 711,8 KB

Nội dung

TRƯỜNG ĐẠI HỌC ĐIỆN LỰC KHOA CÔNG NGHỆ THÔNG TIN BÁO CÁO CHUYÊN ĐỀ HỌC PHẦN ĐỒ HỌA MÁY TÍNH ĐỀ TÀI: CHƯƠNG TRÌNH MƠ PHỎNG BÀN CỜ 2D Sinh viên thực hiện: NGUYỄN ĐỨC LONG (NT) LÃ QUỐC NGHỊ CAO HOÀI NAM PHẠM QUANG ÁNH Giảng viên hướng dẫn: THẦY NGÔ TRƯỜNG GIANG Ngành: CÔNG NGHỆ THÔNG TIN Chuyên ngành: CƠNG NGHỆ PHẦN MỀM Lớp: D13CNPM1 (NHĨM 12) HÀ NỘI, 06/2020 TRƯỜNG ĐẠI HỌC ĐIỆN LỰC KHOA CÔNG NGHỆ THÔNG TIN BÁO CÁO CHUYÊN ĐỀ HỌC PHẦN ĐỒ HỌA MÁY TÍNH ĐỀ TÀI: CHƯƠNG TRÌNH MƠ PHỎNG BÀN CỜ 3D Sinh viên thực hiện: NGUYỄN ĐỨC LONG (NT) LÃ QUỐC NGHỊ CAO HOÀI NAM PHẠM QUANG ÁNH Giảng viên hướng dẫn: THẦY NGÔ TRƯỜNG GIANG Ngành: CÔNG NGHỆ THÔNG TIN Chuyên ngành: CÔNG NGHỆ PHẦN MỀM Lớp: D13CNPM1 (NHÓM 12) HÀ NỘI, 06/2020 Sinh viên thực hiện: STT Họ tên Nguyễn Đức Long Phạm Quang Ánh Lã Quốc Nghị Cao Hồi Nam Gíao viên chấm điểm: Họ tên Giáo viên 1: Giáo viên 2: Chữ ký Ghi Mục Lục A MỞ ĐẦU B NỘI DUNG Chương I: ĐỒ HỌA HAI CHIỀU Vẽ đường thẳng Vẽ đường trịn Thuật Tốn Tơ Màu Trà Thuật tốn tơ màu theo Chương II: Phát Triển Ứng dụng Đồ Họa 2D C Phát biểu toán Các bước giải Kết thực nghiệm Kết Luận A MỞ ĐẦU Sự phát triển khoa học, kĩ thuật, nghệ thuật, kinh doanh công nghệ luôn phụ thuộc vào khả truyền đạt thông tin chúng ta, thông qua bit liệu lưu trữ microchip thông qua giao tiếp tiếng nói Câu châm ngơn từ xa xưa “một hình ảnh có giá trị vạn lời” hay “trăm nghe không thấy” cho thấy ý nghĩa lớn hình ảnh việc truyền tải thơng tin Hình ảnh cảm nhận nhanh dễ dàng hơn, đặc biệt trường hợp bất đồng ngơn ngữ Do khơng có ngạc nhiên mà từ xuất máy tính, nhà nghiên cứu cố gắng sử dụng để phát sinh hình ảnh hình Trong suốt gần 50 năm phát triển máy tính, khả phát sinh hình ảnh máy tính đạt tới mức mà tất máy tính có khả đồ họa Đồ họa máy tính lĩnh vực lý thú phát triển nhanh tin học Nó cịn kết hợp phương pháp công nghệ dùng việc chuyển đổi qua lại liệu hình ảnh máy tính Đồ họa máy tính lĩnh vực khoa học máy tính nghiên cứu tốn học, thuật toán kỹ thuật phép tạo, hiển thị, điều khiển hình ảnh hình máy tính Đồ họa máy tính có liên quan nhiều đến số lĩnh vực đại số, hình học giải tích, hình học họa hình, kỹ thuật máy tính, đặc biết chế tạo phần cứng Chúng ta vẽ hình ảnh khơng ảnh tĩnh mà cịn biến đổi thành hình ảnh sinh động qua phép tịnh tiến, phép biến đổi, Do vậy, qua thời gian tìm hiểu nhóm em định chọn đề tài “Viết Chương trình mơ bàn cờ 3D.” nhằm giúp người hiểu rõ phép biến đổi hình học khơng gian thực B NỘI DUNG Chương I: ĐỒ HỌA HAI CHIỀU Vẽ đường thẳng a Thuật toán Bressenham Thuật toán Thuật toán Bresenham đưa cách chọn yi + yi hay yi + theo hướng khác Đó so sánh khoảng cách điểm thực y với điểm gần kề Nếu điểm nằm gần điểm thực chọn làm điểm vẽ Hình 1.1 Xét trường hơp < m < Gọi y giá trị thực (giá trị xác) đường thẳng x bước thứ i + là: y = m(xi + 1) + b Gọi d1 khoảng cách từ y đến yi Gọi d2 khoảng cách từ y đến yi Ta có: d1 = y – yi d2 = yi = m(xi + + 1) + b - yi + – y = yi + – [m(xi + 1) + b] Ta xét (d1 – d2): d1 – d2 > Ngược lại: ⇨ d1 = [m(xi = m(xi + 1) + b – yi = 2m(xi + 1) – 2yi + 1) + b - yi] – [yi – yi + – m(xi – + m(xi – d2 + 1) - b] + 1) + b + 2b - Dễ thấy d1 – d2 tồn phép toán với số thực m = Và để tuân thủ theo ý tưởng thuật toán thực phép toán số nguyên, ta khử phân số cách nhân vế với dx: Đặt Pi = dx(d1 – d2) m = ⇨ Pi = dx[2m(xi + 1) + 2b – 2yI - 1] Thay Pi = 2dyxi – 2dxyi + c Mặt khác dx ≥ với trường hợp ⇨ dấu Pi dấu với d1 ⇨ Pi Pi ≤ > Pi Ta lại có: Pi + ⇨ = 2dyxi – 2dxyi Pi + c + – Pi ⇨ = 2dy – 2dx(yi Pi + + = Pi Nếu Pi < Pi dx) Ngược lại Ta có: Pi = 2x1dy – 2y1dx + c = 2x1dy – 2(x1 = 2dy – dx + b)dx + 2dy + (2b – 1)dx Hình 1.2 Giả sử khoảng cách từ điểm thực yi so với yi p Do việc phải xét nên + chọn điểm hay điểm gần với điểm thực hơn, mà lần x tăng thêm đơn vị khoảng cách p lại cộng thêm giá trị c Tuy nhiên, khoảng cách p khơng tăng lên cách tuyến tính , nên phải tìm cơng thức tổng qt cho trường hợp , Pi + = ? Pi Lưu đồ giải thuật Hình 1.3 Kết thử nghiệm Hình 1.4 10 Trong cung 1/8 thứ khoảng biến thiên x lớn khoảng biến thiên y, nên xi+1 = xi + Giả sử ta vẽ (Xi, Yi) bước thứ i, ta cần xác định (Xi+1, Yi+1) bước thứ i + Như ta có: Ta có sau: Hình 1.15 Tính Fi Đặt Fi = F(X, Y - 1/2), ta hình có cơng thức: Nếu Fi < (Xi + 1, Y) gần với Yi => Yi+1 = Yi 22 Nếu Fi >= (Xi + 1, Y) gần với Yi - => Yi + = Yi -1 Tính Fi +1 theo Fi Fi + - Fi = 2Xi + + (Yi+12 - Yi2) + (Yi+1 - Yi) (*) Nếu Fi < Fi + = Fi + 2Xi + 3, ta thay Yi+1 = Yi vào (*) Nếu Fi >= Fi + = Fi + 2(Xi - Yi) + 5, thay Yi+1 = Yi -1 vào (*) Tính giá trị F Ta có: Thay Xi = Yi = R cơng thức ta có được: F = 5/4 - R 23 Lưu đồ giải thuật Hình 1.16 24 Kết thử nghiệm Hình 1.17 Hình 1.18 26 Thuật Tốn Tơ Màu Tràn Thuật tốn Đường biên vùng tơ màu thuật tốn tô loang xác định tập đỉnh đa giác, đường biên thuật tốn mơ tả giá trị nhất, màu tất điểm thuộc đường biên Bắt đầu từ điểm nằm bên vùng tô, ta kiểm tra điểm lân cận tơ màu hay có phải điểm biên hay khơng Nếu điểm tô điểm biên ta tơ màu Lặp lại khơng cịn tơ điểm dừng Hình 1.19 -Bước 1: Kẻ vùng biên cần tô -Bước 2: Xác định điểm (x,y) bên vùng cần tô -Bước 3: Tô điểm (x,y) sau tơ loang điểm lân cận Lưu đồ thuật tốn 27 Kết thực nghiệm Hình 1.20 28 Hình 1.21 29 Thuật tốn tơ màu theo đường qt Thuật tốn Với dịng qt, ta xác định phần giao đa giác dịng qt, tơ màu pixel thuộc đoạn giao Để xác định đoạn giao, ta tiến hành việc tìm giao điểm dòng quét với cạnh đa giác, sau giao điểm theo thứ tự tăng dần hoành độ giao điểm Các đoạn giao đoạn thẳng giới hạn cặp giao điểm Tìm ymin, ymax giá trị nhỏ nhất, lớn tập tung độ đỉnh đa giác cho Ứng với dòng quét y = k với k thay đổi từ ymin đến ymax, lặp : Tìm tất hồnh độ giao điểm dịng qt y = k với cạnh đa giác Sắp xếp hoành độ giao điểm theo thứ tự tăng dần : x0 ,x1 , , xn , Tô màu đoạn thẳng đường thẳng y = k giới hạn cặp (x0, x1), ( x1 ,x2), , x2k, x2k+1) Nhưng dừng mức chuyển sang cài đặt gặp phải số vấn đề sau: Ứng với dịng qt, khơng phải lúc tất cạnh đa giác cắt dòng quét Do để cải thiện tốc độ, ta phải tìm cách hạn chế số cạnh cần tìm giao điểm ứng với dịng qt Việc tìm giao điểm cạnh đa giác với dòng quét gặp phép toán phức tạp nhân, chia, ….trên số thực, ta dùng cách giải hệ phương trình để tìm giao điểm Điều làm giảm tốc độ thuật tốn Nếu số giao điểm tìm cạnh đa giác dịng qt lẻ việc nhóm cặp giao điểm đề hình thành đoạn tơ khơng xác Điều xảy dòng quét ngang qua đỉnh đa giác 30 Việc tìm giao điểm dòng quét với cạnh nằm ngang trường hợp đặc biệt, cần phải có cách xử lý thích hợp Để hạn chế số cạnh cần tìm giao điểm ứng với dịng qt, ta áp dụng cơng thức hệ số góc sau: xk+1 = xk + 1/m đó: m hệ số góc cạnh; xk+1 , xk hoành độ giao điểm cạnh với dịng qt y=k y=k+1 Để giải trường hợp số giao điểm qua đỉnh đơn điệu ta tính số giao điểm , qua đỉnh cực trị tính số giao điểm (hoặc 2) Lưu đồ giải thuật Hình 1.22 31 Kết thực nghiệm Hình 1.23 32 Chương II: Phát Triển Ứng dụng Đồ Họa 2D Phát biểu toán Dựa vào kiến thức tìm hiểu Đồ Họa chiều , nhóm chúng em xây dựng ứng dụng mô bàn cờ 2D thư viện đồ họa Graphics Áp dụng thuật toán vẽ đường thẳng Bressenham để vẽ bàn cờ Các bước giải Kết thực nghiệm Hình 2.1 33 C Kết Luận 34 Tài Liệu Tham Khảo Phụ Lục ...TRƯỜNG ĐẠI HỌC ĐIỆN LỰC KHOA CÔNG NGHỆ THÔNG TIN BÁO CÁO CHUYÊN ĐỀ HỌC PHẦN ĐỒ HỌA MÁY TÍNH ĐỀ TÀI: CHƯƠNG TRÌNH MƠ PHỎNG BÀN CỜ 3D Sinh viên thực hiện: NGUYỄN ĐỨC... mà tất máy tính có khả đồ họa Đồ họa máy tính lĩnh vực lý thú phát triển nhanh tin học Nó cịn kết hợp phương pháp công nghệ dùng việc chuyển đổi qua lại liệu hình ảnh máy tính Đồ họa máy tính lĩnh... lĩnh vực khoa học máy tính nghiên cứu tốn học, thuật toán kỹ thuật phép tạo, hiển thị, điều khiển hình ảnh hình máy tính Đồ họa máy tính có liên quan nhiều đến số lĩnh vực đại số, hình học giải tích,

Ngày đăng: 17/03/2022, 07:04

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w