THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 379 |
Dung lượng | 11,64 MB |
Nội dung
Ngày đăng: 14/03/2022, 15:12
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
33. Hou, S., Fan, Y., Zhang, Y., Ye, Y., Lei, J., Wan, W., Wang, J., Xiong, Q., Shao, F.: α Cyber:enhancing robustness of Android malware detection system against adversarial attacks on heterogeneous graph based model. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 609–618, November 2019 | Sách, tạp chí |
|
||
5. Statista: cumulative number of apps downloaded from Google play as of May 2016. https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/ | Link | |||
17. Wu, Q., Li, M., Zhu, X., Liu, B.: MVIIDroid: a multiple view information integration approach for Android malware detection and family identification. IEEE MultiMedia 27(4), 48–57 (2020) 18. Rodríguez-Mota, A., Escamilla-Ambrosio, P.J., Salinas-Rosales, M.: Malware analysis and detection on Android: the big challenge. https://www.intechopen.com/books/smartphones-from-an-applied-research-perspective/malware-analysis-and-detection-on-android-the-big-challenge | Link | |||
1. Koli, J.D.: RanDroid: Android malware detection using random machine learning classifiers.In: 2018 Technologies for Smart-City Energy Security and Power (ICSESP), pp. 1–6. IEEE, March 2018 | Khác | |||
2. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant permission identification for machine-learning-based Android malware detection. IEEE Trans. Ind. Inf. 14(7), 3216–3225 (2018) | Khác | |||
6. Agrawal, P., Trivedi, B.: A survey on Android malware and their detection techniques. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–6. IEEE, February 2019 | Khác | |||
7. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: efficient and explain- able detection of Android malware in your pocket. In: 21th Annual Network and Distributed System Security Symposium (NDSS), February 2014 | Khác | |||
8. Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F.C., Hoffmann, J.: MobileSandbox: look- ing deeper into Android applications. In: 28th International ACM Symposium on Applied Computing (SAC), March 2013 | Khác | |||
9. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-Droid: deep learning based Android malware detection using real devices. Comput. Secur. 89, 101663 (2020) | Khác | |||
10. Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.: Similarity- based Android malware detection using Hamming distance of static binary features. Future Gener. Comput. Syst. 105, 230–247 (2020) | Khác | |||
11. Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J.: A combination method for Android malware detection based on control flow graphs and machine learning algorithms. IEEE Access 7, 21235–21245 (2019) | Khác | |||
12. Amin, M., Tanveer, T.A., Tehseen, M., Khan, M., Khan, F.A., Anwar, S.: Static malware detection and attribution in Android byte-code through an end-to-end deep system. Future Gener. Comput. Syst. 102, 112–126 (2020) | Khác | |||
13. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep Android malware detection. In:Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, pp. 301–308, March 2017 | Khác | |||
14. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for Android malware detection using deep learning. Digit. Invest. 24, S48–S59 (2018) | Khác | |||
15. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal deep learning method for Android malware detection using various features. IEEE Trans. Inf. Forensics Secur. 14(3), 773–788 (2018) | Khác | |||
16. Ren, Z., Wu, H., Ning, Q., Hussain, I., Chen, B.: End-to-end malware detection for Android IoT devices using deep learning. Ad Hoc Netw. 101, 102098 (2020) | Khác | |||
19. Arora, A., Peddoju, S.K., Conti, M.: PermPair: Android malware detection using permission pairs. IEEE Trans. Inf. Forensics Secur. 15, 1968–1982 (2019) | Khác | |||
20. Xu, K., Li, Y., Deng, R., Chen, K., Xu, J.: DroidEvolver: self-evolving Android malware detection system. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 47–62. IEEE, June 2019 | Khác | |||
21. Wang, W., Zhao, M., Wang, J.: Effective Android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J. Ambient Intell. Humaniz. Comput.10(8), 3035–3043 (2019) | Khác | |||
22. Rana, M.S., Rahman, S.S.M.M., Sung, A.H.: Evaluation of tree based machine learning classi- fiers for Android malware detection. In: International Conference on Computational Collective Intelligence, pp. 377–385. Springer, Cham, September 2018 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN