THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 305 |
Dung lượng | 13,09 MB |
Nội dung
Ngày đăng: 29/12/2020, 16:06
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
3. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggar- wal, C., Zhai, C. (eds.) Mining Text Data Book, pp. 43–76. Springer, Boston (2012).https://doi.org/10.1007/978-1-4614-3223-4 3 | Link | |
17. Kozareva, Z., Montoyo, A.: Paraphrase identification on the basis of supervised machine learning techniques. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 524–533. Springer, Heidelberg (2006). https://doi.org/10.1007/11816508 52 | Link | |
28. Guarino, N.: The ontological level: revisiting 30 years of knowledge representa- tion. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 52–67. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4 4 | Link | |
1. Fader, A., Zettlemoyer, L.S., Etzioni, O.: Paraphrase-driven learning for open ques- tion answering. In: Proceedings of ACL-2013, pp. 1608–1618 (2013) | Khác | |
2. Vossen, P., Rigau, G., Serafini, L., Stouten, P., Irving, F., van Hage, W.R.: News- Reader: recording history from daily news streams. In: Proceedings of LREC-2014, pp. 2000–2007 (2014) | Khác | |
4. Loukachevitch, N., Alekseev, A.: Summarizing news clusters on the basis of the- matic chains. In: Proceedings of LREC-2012, pp. 1600–1607 (2012) | Khác | |
5. Clough, P., Gaizauskas, R., Piao, S., Wilks, Y.: METER: MEasuring TExt reuse.In: Proceedings of the 40th Anniversary Meeting for the Association for Compu- tational Linguistics (ACL 2002), pp. 152–159 (2002) | Khác | |
6. Marton, Y., Callison-Burch, C., Resnik, P.: Improved statistical machine transla- tion using monolingually-derived paraphrases. In: Proceedings of the 2009 Confer- ence on Empirical Methods in Natural Language Processing, EMNLP-2009, pp.381–390 (2009) | Khác | |
7. Dolan, W.B., Quirk, C., Brockett, C.: Unsupervised construction of large para- phrase corpora: exploiting massively parallel news sources. In: Proceedings of the 20th International Conference on Computational Linguistics, Coling-2004, Geneva, Switzerland (2004) | Khác | |
10. Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez-Agirre, A., Mihalcea, R., Wiebe, J.: Semeval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. In: Proceedings of SemEval, pp. 497–511 (2016) | Khác | |
12. Han, L., Kashyap, A., Finin, T., Mayfield, J., Weese, J.: UMBC EBIQUITY- CORE: semantic textual similarity systems. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Con- ference and the Shared Task: Semantic Textual Similarity, Atlanta, Georgia, USA, June, pp. 44–52. Association for Computational Linguistics (2013) | Khác | |
13. Loukachevitch, N., Dobrov, B.: RuThes linguistic ontology vs. Russian wordnets.In: Proceedings of Global WordNet Conference GWC-2014, pp. 154–162 (2014) 14. Pronoza, E., Yagunova, E., Pronoza, A.: Construction of a Russian paraphrase cor-pus: unsupervised paraphrase extraction. In: Braslavski, P., Markov, I., Pardalos, P., Volkovich, Y., Ignatov, D.I., Koltsov, S., Koltsova, O. (eds.) RuSSIR 2015 | Khác | |
15. Pivovarova, L., Pronoza, E., Yagunova, E., Pronoza, A.: ParaPhraser: Russian paraphrase corpus and shared task. In: Filchenkov, A., et al. (eds.) AINL 2017.CCIS, vol. 789, pp. 211–225. Springer, Cham (2018) | Khác | |
16. Loukachevitch, N., Shevelev, A., Mozharova V.: Testing features and methods in Russian Paraphrasing Task. In: Proceedings of International Conference on Com- putational Linguistics and Intellectual Technologies Dialog 2017, vol. 1, pp. 135–145 (2017) | Khác | |
18. Pronoza, E., Yagunova, E.: Low-level features for paraphrase identification. In:Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp | Khác | |
20. Mihalcea, R., Corley, C., Strapparava C.: Corpus-based and Knowledge-based mea- sures of text semantic similarity. In: Proceedings of the American Association for Artificial Intelligence (2006) | Khác | |
21. Fernando, S., Stevenson, M.: A semantic similarity approach to paraphrase detec- tion. In: Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for Computational Linguistics, pp. 45–52 (2008) | Khác | |
22. Bar, D., Biemann, C., Gurevych, I., Zesch, T.: UKP: computing semantic textual similarity by combining multiple content similarity measures. In: Proceedings of the 6th International Workshop on Semantic Evaluation, Held in Conjunction with the 1st Joint Conference on Lexical and Computational Semantics, pp. 435–440 (2012) | Khác | |
23. Rychalska, B., Pakulska, K., Chodorowska, K., Walczak, W., Andruszkiewicz, P.:Samsung Poland NLP team at SemEval-2016 Task 1: necessity for diversity; com- bining recursive autoencoders, wordnet and ensemble methods to measure semantic similarity. In: Proceedings of the 10th International Workshop on Semantic Eval- uation (SemEval 2016), San Diego, CA, USA (2016) | Khác | |
24. Gurevych, I., Niederlich, H.: Computing semantic relatedness in German with revised information content metrics. In: Proceedings of OntoLex 2005 - Ontolo- gies and Lexical Resources, IJCNLP 2005 Workshop (2005) | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN