Nghiên cứu phát triển cảm biến sinh học điện hóa trên cơ sở dây nano polypyrrole tích hợp hệ vi lưu1122

130 6 0
Nghiên cứu phát triển cảm biến sinh học điện hóa trên cơ sở dây nano polypyrrole tích hợp hệ vi lưu1122

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIÁO DO I HC BÁCH KHOA HÀ NI Trn Th Luyn NGHIÊN CU PHÁT TRIN CM BIN SINH HN  DÂY NANO POLYPYRROLE TÍCH HP H  LUN ÁN TI THUT HÓA HC HÀ NI - 2017 B GIÁO DO I HC BÁCH KHOA HÀ NI Trn Th Luyn NGHIÊN CU PHÁT TRIN CM BIN SINH HN  DÂY NANO POLYPYRROLE TÍCH HP H  Chuyên ngành: K thut Hóa hc Mã s: 62520301 LUN ÁN TI THUT HĨA HC NG DN KHOA HC: PGS.TS MAI ANH TUN PGS.TS HUNH  HÀ NI - 2017 L u ci s ng dn ca tp th ng dn Các s liu, kt qu nghiên cu trung thc cơng b bt k cơng trình khác Tp th ng dn PGS TS Mai Anh Tun Tác gi lun án PGS.TS Hun Th Luyn LI C Vi tm lịng kính trng bic, tơi xin gi li ct ti Thy, PGS.TS Mai Anh Tun PGS.TS Hu    i Thy tâm huyt, yêu ngh  tài tng dn tôi, ng, ng h ht   tơi có th hồn thành cơng trình nghiên cu Tôi xin chân thành c  v mt kinh phí t nguo nghiên cu sinh ca B Giáo d c),  tài nghiên cu khoa hc cp B (mã s: B2015-01-102) Qu Phát trin khoa hc công ngh Quc gia thông  tài mã s 103.99-2013.58 c gi li c c to Thng nghip ca tơi B  - n K thut Hóa hc, Vin ITIMS, Vi ti hi hc Bách Khoa Hà No tt c nhu kin thun li nh tơi có th thc hin lun án Tôi xin chân thành c tr lý, nghiên cu sinh hc viên cao hc ti PTN Vt liu sinh hc Khoa hc s sng, Vii hc Bách Khoa Hà Ni s h tr nhit tình thi gian tơi thc hin lun án Tôi xin trân trng c i hc Quc gia Hà Ni; GS i hc Tsukuba (Nht Bn) s  nhit tình nh góp chun mơn quý báu Tôi xin trân trng cm  CP công ngh sinh hc thú y BTV (Biotech-Vet)  cho phép tip cn ngun mu ti nhà máy trình thc hi cu sinh Thêm nc gi li c chân thành ti i thân bln ng viên, khích l Tôi c dành nhng li c, m, chm thơng chia s vi tơi cơng vi tơi có th tp trung hc tp nghiên cu sut nhgian kh Nghiên cu sinh Trn Th Luyn M  C L C DANH MC CÁC KÝ HIU, CH VIT TT i DANH MC CÁC BNG iii DANH MC CÁC HÌNH V TH iv M U 1 TNG QUAN 1.1 Cm bin sinh hn hóa n hóa 1.1.2 Cm bin sinh hn hóa 1.1.2.1 Nhu cu phát trin cm bin sinh hc 1.1.2.2 Khái nim cm bin sinh hc cm bin sinh hn hóa 1.1.2.3 Tình hình nghiên cu cm bin sinh hc 1.1.2.4 Tip cn phát trin cm bin sinh hn hóa 11 1.2 Bin tính b mt cm bin sinh hn hóa s dng vt liu polime dn polypyrrole 12 1.2.1 Vt liu polime dn polypyrrole ng dng ch to cm bin DNA n hóa 12 1.2.2 Tng hp vt liu polime dn polypyrrole s dng k thun hóa 13 c a q trình polime hóa pyrrole s d ng k thu 1.2.2.2 M t s k thu cs d n hóa t ng h p polime d n 1.2.2.3 Các y u t nh 1.2.2.4 Quá trình doping polypyrrole 17 1.2.2.5 Vai trò c a gelatin t ng h p dây nano polypyrrole 20 1.3 C nh phn t cm nhn sinh hc lên cm bin sinh hn hóa 21 1.3.1 DNA kháng nguyên, kháng th 21 1.3.1.1 DNA 21 1.3.1.2 Kháng nguyên, kháng th 22  nh phn t cm nhn sinh hc 24 1.3.2.1 H p ph v t lý 24 1.3.2.2 Liên k t c ng hóa tr 26 1.3.2.3 Ái l c sinh h c 28 1.4 Tích hp cm bin sinh hn hóa bình phn ng mini 32 1.5 K thun hóa nhn bit thành phn sinh hc 34  tng tr n hóa 34 1.5.1.1 Nguyên lý c a ph t ng tr n hóa 34 1.5.1.2 Bi u di n t ng tr 1.5.1.3 M m t ph ng ph c 35 t ng tr  39  vòng (Cyclic Voltammetry - CV) 40 V 40 1.5.3.1 Nguyên lý c 1.5.3.2 Quét th n c c ph ng 42 NGHIÊN CU CH TO CM BIN DNA  DÂY NANO POLYPYRROLE 45 2.1 M u 45 2.2 Thc nghim 45 2.2.1 Hóa cht 45 2.2.2 n cc tích hp 46 2.2.3 Tng hp dây nano PPy s dng k thun hóa 46 2.2.4 C nh DNA n cc Pt-PPy NWs 47  tng tr cn cc Pt-PPy NWs-DNA dò 47 2.3 Kt qu tho lun 48 2.3.1 Tng hn cc Pt 48 c n hóa c a h n c c Pt tích h p 2.3.1.2 Giá tr n th ph n 2.3.1.3 ng c a gelatin 2.3.1.4 ng c a n ng polyme hóa pyrrole 48 khuôn nano ch t o dây polyme 50 monome pyrrole 51 2.3.1.5 Th i gian polime hóa 53 2.3.1.6 Ph FT-IR 54 2.3.1.7 Ph Raman 55 u c nh DNA dò 56 u lai hóa DNA dị- DNA  57 2.4 Kt lun 60 NGHIÊN CU CH TO CM BIN DNA N HĨA TÍCH HP H  61 3.1 M u 61 3.2 Thc nghim 62 3.2.1 Hóa cht 62 3.2.2 H n cc tích hp kt ni vi bình phn ng mini 62 3.2.3 Tng h   65 3.2.4 C nh DNA n cc Pt-PPy NWs 66 3.2.5. DNA  -in Amplifier 66      3.3 Kt qu 66 3.3.1.        66 67 68 c tuyn hóa ca h n cc tích h   70      71 3.3.4 Phát hin hing lai hóa DNA 74 3.4 Kt lun 77 NGHIÊN CU CH TO CM BIN MIN DN HĨA TÍCH HP BÌNH PHN NG MINI NG DNG TRONG PHÁT HIN VIRUS NEWCASTLE 78 4.1 M u 78 4.2 Thc nghim 80 4.2.1 Hóa cht 80 4.2.2 Thit k ch to h n cc tích hp bình phn ng mini 81 4.2.3 C nh kháng th b mt cm bin 82 4.2.4 Phát hin virus (bt hot) s dng cm bin min dn hóa 83 4.2.5 Thng kê x lý s liu 83 4.3 Kt qu 84 c tuyn hóa ca h n cc s dn cc so sánh thay th  to 84 u c nh kháng th 87 - kháng th 91 4.3.4 Các yu t n tín hiu ca cm bin min dch 92 4.3.4.1 ng c a n kháng th 92 4.3.4.2 ng c a th i gian b t c p kháng th - virus 95 4.3.5 nhy ca cm bin min dch 97 4.4 Kt lun 100 KT LUN CHUNG 101 DANH M CA LUN ÁN 103 TÀI LIU THAM KHO 104  TT Vit tt T ti ng Vit Ab Antibody Kháng th DNA Deoxyribonucleic acid Axit deoxyribonucleic Ag Antigen Kháng nguyên AO Atomic Orbital Obitan nguyên t APTES 3-aminopropyltriethoxy- 3-aminopropyltriethoxy-silan silane BSA Bovine serum albumin Albumin huyt bò CE Counter Electrode n ci CV  -Ampe vòng DPV Diffirential Pulse Vi sai xung Voltammetry Voltammetry 10 EID50 50 % Empryo infective dose Liu nhim trùng phôi (gà) 11 EIS Electrochemical impedance spectroscopy Ph tng tr n hóa 12 FE-SEM Field Emision Scanning Hin t quét phát x ng Electron Microscope 13 ELISA Enzyme linked immuno K thut min dch hp ph gn sorbent assay men 14 FTIR Fourier transform infrared spectroscopy Ph hng ngoi bii Fourier 15 GA Glutaraldehyde Glutaraldehyde 16 GS Galvanostatic  i 17 HIV Human immunodeficiency virus Virus gây suy gim min dch cho i 18 HPV Human papillomavirus V t cung 19 IUPAC International Union of Pure Hip hi Hóa Tinh khit ng and Applied Chemistry dng Quc t 20 ISFET Ion sensitive field effect Transistor hiu ng nhy ion 21 ITO i tin oxide Indium Oxit thic - Indi 22 23 MO MP™S Molecular Orbital (3-Mercaptopropyl) Obitan phân t (3-Mercaptopropyl) trimethoxysilane trimethoxysilane 24 NHS N-Hydroxysuccinimide N-Hydroxysuccinimide 25 PANi Polyaniline Polyaniline 26 PBS Phosphate buffered saline Dung dch m phosphate i 27 PCR Polymerase chain reaction Phn ng chui polymerase 28 PDMS Polydimethylsiloxane Polydimethylsiloxane 29 PPy Polypyrrole Polypyrrole 30 PrA Protein A Protein A 31 PRE Psuedo reference electrode n cc so sánh thay th 32 RE Reference electrode n cc so sánh 33 SARS Severe acute respiratory Hi chng hô hp cp tính nng syndrome 34 SEM Scanning electron microscopy Hin t quét 35 SERS Surface Enhanced Raman Ph Raman Tng b mt Spectroscopy 36 SWV Square Wave Voltammetry Von-ampe sóng vng 37 UV Ultraviolet T ngoi 38 WE Working Electrode n cc làm vic 39 WHO World Health Organization T chc y t th gii ii  Bng 1.1: Mt s kt qu nghiên cu v cm bin sinh hn hóa th gii Bng 1.2: Mt s kt qu nghiên cu v cm bin sinh hc n hóa ti Vit Nam 10 Bng 1.3: S ph thuc cp i nhi 25 C E = Ep   0,5 43 Bng 2.1: Trình t chuDNA 45 Bng 2.2: Các thông s tng tr mô phng theo m 59 Bng 2.3: So sánh cm bin DNA  to vi mt s cm bin DNA nhng công b khác 59 Bng 3.1: So sánh cm bin DNA tích hp vi kênh PDMS ch to c vi mt s cm bin DNA nhng công b khác 76 Bng 4.1: S ng gia súc, gia cm 01.10.2014 78 Bng 4.2: Qui trình ch tn cc vàng WE CE tích hp 81 Bng 4.3: Các thông s c t kt qu s dng h n cc vi n cc so sánh t ch to n ci 85 Bng 4.4: Các giá tr Ip,a, I p,c , Ipeak c t kt qu i vn cc vàng (WE) sau mc c nh kháng th 89 Bng 4.5: Các giá tr Ip,a, Ip,c , Ipeak peak c t kt qu i vi n cc cm bin min dch cm bin min dch/virus Newcastle i n kháng th c c nh b mt cm bin 93 Bng 4.6: Các giá tr Ip,a, Ip,c , Ipeak peak c t kt qu i vi n cc cm bin mi n dch cm bin min dch/virus Newcastle i thi gian bt cp kháng th - virus 96 Bng 4.7: Các giá tr Ip,a, Ip,c , Ipeak peak c t kt qu i vi n cc cm bin min dch cm bin min dch/virus Newcastle   i hàm ng virus Newcastle 98 Bng 4.8: So sánh kt qu dị tìm virus gây bnh ca mt s loi cm bin min dch 99 iii tính tt khong virus Newcastle t 102 n 10 EID50/ml v liên h: Ipeak = 0,0279LogN  0,00306 R = 0,9969  Các kt qu c ca lun án m nhiu trin vng Vic tích hp cm bin sinh hn hóa h n ng mini nhm thu nh h thng phân tích, ging mu tiêu th có th s  c phát trin thêm mc nhm ti n gn kh ng dng thc tic tích hp thêm mt b phn thu thp x lý s  liu nhm phát trin hoàn chnh mt b n hóa cm tay, phc v ng Mt khác, h cm bin sinh hn hóa tích hp h  c tip tc phát trin  vt liu cu trúc nano khác ng dng phát hin virus gây bnh có tính thi s  thc hic nhng mc tiêu trên, cn có s kt hp  ngành: hóa hc, vt lý, khoa hc vt liu, n t y sinh 102  Thi Luyen Tran, Thi Xuan Chu, Dang Chinh Huynh, Duc Thanh Pham, Thi Hoai Thuong Luu, Anh Tuan Mai (2014), Effective immobilization of DNA for development of polypyrrole nanowires based biosensor, Applied Surface Science 314, p 260-265 (*IF 2016: 3.15*) Trn Th Luyn, Hu Phúc Quân, Chu Th Xuân, Mai Anh Tun (2014), Nghiên c u ng d ng k thu n hóa t ng h p dây nano polypyrrole ng ng d ng c m bi n sinh h c, Tp chí Hóa hc, 52(5A), p 6165 Trn Th Luyn, Chu Th Xuân, Phc Thành, Hun (2014), C nh tr c ti p DNA lên c m bi n sinh h dây nano polypyrrole, T chí Khoa hc Cơng ngh, 52(3B), p 166-173 Tran Thi Luyen, Huynh Dang Chinh, Pham Duc Thanh, Chu Thi Xuan, Mai Anh Tuan (2014), Label-free electrochemical biosensor based on polypyrrole nanowires, The th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN), Ha Long 2-6/11/2014, Vietnam, p 377 Luu Thi Hoai Thuong, Tran Thi Luyen, Do Phuc Quan, Pham Duc Thanh, Pham Thi Kim Thanh, Chu Thi Xuan, Mai Anh Tuan (2014), Design and fabrication of microfluidic biosensor composed of a PDMS microchannel and three electrode platform for electrochemical measurement, The nd International Conference on Advanced Materials and Nanotechnology (ICAMN), Hanoi, Vietnam, p 254-260 Thi Luyen Tran, Thi Xuan Chu, Phuc Quan Do, Duc Thanh Pham, Van Vu Quan Trieu, Dang Chinh Huynh and Anh Tuan Mai (2015), In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor, Journal of Nanomaterials, vol 2015, Article ID 458629, pages (*IF 2016: 1.758*) Tran Thi Luyen, Chu Thi Xuan, Huynh Dang Chinh, Mai Anh Tuan (2015), Development of electrochemical biosensors integrated with microchambers for DNA detection, Tp chí Hóa hc, 53(6e4), p 169-173 Luu Thi Hoai Thuong, Tran Thi Luyen, Pham Duc Thanh, Trieu Van Vu Quan, Pham Van Tong, Ta Thi Nhat Anh, Chu Thi Xuan, Mai Anh Tuan (2015), Fabrication of PDMSbased Microfluidic Devices Toward Biomedical Applications             105A, p 38-42 Trn Th Luyn, Chu Th   Phúc Quân, Phc Thành, Nguyn Hi Nam, Nguyn Quang Long, Hun (2015), Thi t k ch t o c m bi n n hóa vi dịng ch y tích h p n c c so sánh thay th ch t o dây nano polypyrrole nh m c nh DNA,                 -10/11/2015, Viet Nam, p 460-463 103     (2005)  (2005)   (1999)   (2005)     (2004) Nh  (2012) FET   (2004) Virus   (2008) 10   (2009) DNA   11 12  (2002)  (2011) 13 virus   (2000)   14 A G MacDiarmid   15 16 : A novel role for orga Current Applied Physics, vol 1, pp 269279 A J Bard, L R Faulkner (2001) Electrochemical Methods: Fundamentals and Applications John Wiley Sons, Inc A Lermo, S Fabiano, S Hernández, R Galve, M P Marco, S Alegret, M I Pividori (2009) Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors Biosensors and Bioelectronics, vol 24, pp 2057 17 2063 A Moliton, R C Hiorns (2004) Review of electronic and optical properties of -conjugated polymers: Applications in optoelectronic International, vol 53, pp 13971412 104 18 19 20     A Malinauskas (2006) Electrochemical sensors based on conducting polymer-polypyrrole Electrochimica Acta, vol 51, pp 60256037 A T Mai, T P Duc, X C Thi, M H Nguyen, H H Nguyen (2014) Highly sensitive DNA sensor based on polypyrrole nanowire Applied Surface Science, vol 309, pp 285-289 A Taninaka, O Takeuchi, H Shigekawa (2010) Hidden variety of biotinstreptavidin/avidin local interactions revealed by site-selective dynamic force spectroscopy Physical chemistry chemical physics, vol 12, pp 1257812583 21 22 23 B Byrne, E Stack, N Gilmartin,   (2009) Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins Sensors (Switzerland), vol 9, pp 44074445 B C Heinze (2010) Lab-on-a-Chip Optical Immunosensor for Pathogen Detection The University of Arizona B H Nguyen, L D Tran, Q P Do, H Le Nguyen, N H Tran, P X Nguyen (2013) Label-free detection of aflatoxin M1 with electrochemical Fe3 O4/polyaniline-based aptasensor Materials Science and Engineering C, vol 33, no 4, pp 22292234 24 B Pejcic, R De Marco, G Parkinson (2006) The role of biosensors in the detection of emerging infectious diseases Analyst, vol 131, pp 10791090 25 B Samel, M K Chowdhury, G Stemme (2007) The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) 26 27 catalyst Journal of Micromechanics and Microengineering, vol 17, no 8, pp 1710 1714 B Saoudi, C Despas, M Chehimi, N Jammul, M Delamar, J Besière, A.Walcarius (2000) Study of DNA adsorption on polypyrrole: interest of dielectric monitoring Sensors and Actuators B: Chemical, vol 62, pp 3542 B Seven, M Bourourou, K Elouarzaki, J F Constant, C Gondran, M Holzinger, S Cosnier, S Timur (2013) Impedimetric biosensor for cancer cell detection Electrochemistry Communications, vol 37, pp 3639 28 B Song, Y Zhou, H Jin, T Jing, T Zhou, Q Hao, Y Zhou, S Mei, Y I Lee (2014) Selective and sensitive determination of erythromycin in honey and dairy products by molecularly imprinted polymers based electrochemical sensor Microchemical Journal, vol 116, pp 183190 29 30 B Y Zhao, Q Wei, C Xu, H Li, D Wu, Y Cai, K Mao, Z Cui, B Du (2011) Label-free electrochemical immunosensor for sensitive detection of kanamycin Sensors and Actuators B: Chemical, vol 155, pp 618625 C Ding, H Li, K Hu, J.-M Lin (2010) Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode Talanta, vol 80, pp 13851391 105 31 C J Easley, J M Karlinsey, J M Bienvenue, L a Legendre, M G Roper, S H Feldman, M A Hughes, E L Hewlett, T J Merkel, J P Ferrance, J P Landers (2006) A fully integrated microfluidic genetic analysis system with sample-in-answerout capability Proceedings of the National Academy of Sciences of the United States 32 of America, vol 103, no 51, pp 1927219277 C K Joung, H N Kim, H C Im, H Y Kim, M H Oh, Y R Kim (2012) Ultrasensitive detection of pathogenic microorganism using surface-engineered impedimetric immunosensor Sensors and Actuators B: Chemical, vol 161, pp 824 33 831 C L Smith, J S Milea, G H Nguyen (2005) Immobilization of nucleic acids using 34 biotin-strept(avidin) systems Topics in Current Chemistry, vol 261 pp 6390 C M Jenden, R G Davidson, T G Turner (1993) A Fourier transform-Raman spectroscopic study of electrically conducting polypyrrole films Polymer, vol 34, pp 16491652 35 C S Thompson, A R Abate (2013) Adhesive-based bonding technique for PDMS microfluidic devices Lab on a Chip, vol 13, no 4, pp 632635 36 C V Tuan, M A Tuan, N V Hieu, T Trung (2012) Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH 37 gas sensor application Current Applied Physics, vol 12, pp 10111016 C W Tsao, D L DeVoe (2009) Bonding of thermoplastic polymer microfluidics 38 Microfluidics and Nanofluidics, vol 6, no 1, pp 116 D Ge, J Mu, S Huang, P Liang, O U Gcilitshana, S Ji, V Linkov, W Shi (2011) Electrochemical synthesis of polypyrrole nanowires in the presence of gelatin Synthetic Metals, vol 161, pp 166172 39 D H Tong, P D Tran, X T Tung Pham, V B Pham, T T Tuyen Le, M C Dang, C J M Van Rijn (2010) The nanofabrication of Pt nanowire arrays at the wafer-scale and its application in glucose detection Advances in Natural Sciences: Nanoscience and Nanotechnology, vol 1, pp 015011 40 D M Knipe, P M Howley (2007) Fields Virology Lippincott Williams & Wilkins, 5th Edition 41 D Tang, R Yuan, Y Chai (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer Analytical Chemistry, vol 80, no 5, pp 1582 1588 42 D U Kim, B Yoo (2011) A novel electropolymerization method for PPy nanowirebased NH gas sensor with low contact resistance Sensors and Actuators B: Chemical, vol 160, pp 11681173 106 43 D Wang, N Gan, J Zhou, P Xiong, Y Cao, T Li, D Pan, S Jiang (2014) Signal 44 amplification for multianalyte electrochemical immunoassay with bidirectional stripping voltammetry using metal-enriched polymer nanolabels Sensors and Actuators B: Chemical, vol 197, pp 244253 E Komarova, M Aldissi, A Bogomolova (2005) Direct electrochemical sensor for 45 fast reagent-free DNA detection Biosensors and Bioelectronics, vol 21, pp 182189 E Spain, T E Keyes, R J Forster (2013) Polypyrrole-gold nanoparticle composites for highly sensitive DNA detection Electrochimica Acta, vol 109, pp 102109 46 F Salam, I E Tothill (2009) Detection of Salmonella typhimurium using an electrochemical immunosensor Biosensors and Bioelectronics, vol 24, pp 2630 2636 47 G Palacios, P Quan, O J Jabado, S Conlan, D L Hirschberg, Y Liu, J Zhai, N Renwick, J Hui, H Hegyi, A Grolla, J E Strong, J S Towner, T W Geisbert, P B Jahrling, C Büchen-Osmond, H Ellerbrok, M P Sanchez-Seco, Y Lussier, P Formenty, M S T Nichol, H Feldmann, T Briese, W I Lipkin (2007) Panmicrobial oligonucleotide array for diagnosis of infectious diseases Emerging infectious diseases, vol 13, pp 7381 48 G Subramanian (2004) Antibodies-VOLUME PURIFICATION Plenum Publishers 49 H Baccar, M Mejri, R Prehn, F del Campo, E Baldrich, M Rosemonde, A Abdelghani (2014) Interdigitated Microelectrode Arrays Integrated in Microfluidic Cell for Biosensor Applications Journal of Nanomedicine & Nanotechnology, vol 1: PRODUCTION AND 05, no 06, pp 1000243 50                J Braz Chem Soc., 51 vol 19, no 8, pp 15381545, 2008 H Eisazadeh (2007) Studying the Characteristics of Polypyrrole and its Composites 52 World Journal of Chemistry, vol 2, no 2, pp 6774 H J Um, M Kim, S H Lee, J Min, H Kim, Y W Choi, Y H Kim (2011) Electrochemically oriented immobilization of antibody on poly-(2-cyanoethylpyrrole)-coated gold electrode using a cyclic voltammetry Talanta, vol 84, no 2, pp 330334 53 H K Chitte, N V Bhat, V E Walunj, G N Shinde (2011) Synthesis of Polypyrrole Using Ferric Chloride (FeCl 3) as Oxidant Together with Some Dopants for Use in Gas Sensors Journal of Sensor Technology, vol 1, pp 4756 54 H Peng, L Zhang, C Soeller, J Travas-Sejdic (2009) Conducting polymers for electrochemical DNA sensing Biomaterials, vol 30, pp 21322148 55 H Q A Lê, S Chebil, B Makrouf, H Sauriat-Dorizon, B Mandrand, H KorriYoussoufi (2010) Effect of the size of electrode on electrochemical properties of 107 ferrocene-functionalized polypyrrole towards DNA sensing Talanta, vol 81, pp 1250-1257 56 57 H Zhang, J Wang, Q Shan, Z Wang, S Wang (2013) Tunable electrode morphology used for high performance supercapacitor: Polypyrrole nanomaterials as model materials Electrochimica Acta, vol 90, pp 535541 J Baniukevic, J Kirlyte, A Ramanavicius, A Ramanaviciene (2012) Comparison of oriented and random antibody immobilization techniques on the efficiency of immunosensor Procedia Engineering, vol 47, pp 837840 58 J Bredas, G Street (1985) Polarons, bipolarons, and solitons in conducting polymers Accounts of Chemical Research, vol 1305, pp 309315 59 J Fan, M Wan, D Zhu, B Chang, Z Pan, S Xie (1999) Synthesis and properties of carbon nanotube-polypyrrole composites Synthetic Metals, vol 102, pp 12661267 60 J Heo, S Z Hua (2009) An overview of recent strategies in pathogen sensing Sensors, vol 9, pp 44834502 61 J Lum, R Wang, K Lassiter, B Srinivasan, D Abi-Ghanem, L Berghman, B Hargis, S Tung, H Lu, Y Li (2012) Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification Biosensors and Bioelectronics, vol 38, pp 6773 62 63 J P Tosar, J L Holmes, S D Collyer, F Davis, J Laíz, S P J Higson (2013) Template and catalytic effects of DNA in the construction of polypyrrole/DNA composite macro and microelectrodes Biosensors and Bioelectronics, vol 41, pp 294301 J R №rth (1985) Immunosensors: Antibody-based biosensors Trends in Biotechnology, vol 3, pp 180186 64 J Wilson, S Radhakrishnan, C Sumathi, V Dharuman (2012) Polypyrrolepolyaniline-Au (PPy-PANi-Au) nano composite films for label-free electrochemical 65 DNA sensing Sensors and Actuators B: Chemical, vol 171172, pp 216222 J Wu, R Wang, H Yu, G Li, K Xu, N C Tien, R C Roberts, D Li (2015) Inkjet- 66 printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems Lab Chip, vol 15, pp 690695 J Zhou, A V Ellis, N H Voelcker (2010) Recent developments in PDMS surface modification for microfluidic devices Electrophoresis, vol 31, no 1, pp 216 67 68 J Zhou, L Du, L Zou, Y Zou, N Hu, P Wang (2014) An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A - Au nanoparticle modified gold electrode Sensors and Actuators B: Chemical, vol 197, pp 220227 K Arora, N Prabhakar, S Chand, B D Malhotra (2007) Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA 108 hybridization biosensor Sensors and Actuators B: Chemical, vol 126, no 2, pp 655 663 69 70 K C Tang, E Liao, W L Ong, J D S Wong, A Agarwal, R Nagarajan, L Yobas (2006) Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon Journal of Physics: Conference Series, vol 34, pp 155161 K Dawson, A Wahl, S Barry, C Barrett, N Sassiat, A J Quinn,   (2014) Fully integrated on-chip nano-electrochemical devices for electroanalytical applications Electrochimica Acta, vol 115, pp 239246 71 K E Jones, N G Patel, M a Levy, A Storeygard, D Balk, J L Gittleman, P Daszak (2008) Global trends in emerging infectious diseases Nature, vol 451, pp 990993 72 K Liu, J J Zhang, C Wang, J J Zhu (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor Biosensors and 73 Bioelectronics, vol 26, no 8, pp 36273632 K N Han, C A Li, M.-P N Bui, X.-H Pham, B S Kim, Y H Choa, E K Lee, G H Seong (2013) On-chip electrochemical detection of bio/chemical molecule by nanostructures fabricated in a microfluidic channel Sensors and Actuators B: 74 Chemical, vol 177, pp 472477 K Ren, J Zhou, H Wu (2013) Materials for microfluidic chip fabrication Accounts 75 of Chemical Research, vol 46, no 11, pp 23962406 L D Tran, B H Nguyen, N V Hieu, H V Tran, H L Nguyen, P X Nguyen (2011) Electrochemical detection of short HIV sequences on chitosan/Fe 3O4 nanoparticle based screen printed electrodes Materials Science and Engineering C, vol 31, pp 76 477485 L D Tran, D T Nguyen, B H Nguyen, Q P Do, H Le Nguyen (2011) Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus Talanta, vol 77 85, pp 15601565 L H Chen, C C Chan, K Ni, P B Hu, T Li, W C Wong, P Balamurali, R Menon, M Shaillender, B Neu, C L Poh, X Y Dong, X M Ang, P Zu, Z Q Tou, K C Leong (2013) Label-free fiber-optic interferometric immunosensors based on waist- 78 79 enlarged fusion taper Sensors and Actuators B: Chemical, vol 178, pp 176184 L H Nguyen, H B Nguyen, N T Nguyen, T D Nguyen, D L Tran (2012) Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes Advances in Natural Sciences: Nanoscience and Nanotechnology, vol 3, p 015004 L M Yee, H N M E Mahmud, A Kassim, W M M Yunus (2007) Polypyrrolepolyethylene glycol conducting polymer composite films: Preparation and characterization Synthetic Metals, vol 157, no 89, pp 386389 109 80 81 82 83 M A Booth, S Harbison, J Travas-Sejdic (2011) Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance Biosensors and Bioelectronics, vol 28, pp 362367 M Gerard, A Chaubey, B D Malhotra (2002) Application of conducting polymers to biosensors Biosensors and Bioelectronics, vol 17, no 5, pp 345359    vá, P Fedorko, M Trchová, J Stejskal (2013) Polypyrrole/silver composites prepared by single-step synthesis Synthetic Metals, vol 166, pp 5762 M Omastova, S Kogna, J Pionteck, A Janke, J Pavlinec (1996) Electrical properties and stability of polypyrrole containing conducting polymer composites Synthetic Metals, vol 81, pp 4957 84 85 86 M Page, R Thorpe (2002) Purification of IgG Using Protein A or Protein G The Protein Protocols Handbook, 2nd Edition, Humana Press Inc., pp 993994 M Shamsipur, S H Kazemi, M F Mousavi (2008) Impedance studies of a nanostructured conducting polymer and its application to the design of reliable scaffolds for impedimetric biosensors Biosensors and Bioelectronics, vol 24, pp 104110 M Yousef Elahi, S Z Bathaie, S H Kazemi, M F Mousavi (2011) DNA immobilization on a polypyrrole nanofiber modified electrode and its interaction with salicylic acid/aspirin Analytical Biochemistry, vol 411, pp 17684 87 88 89 N Pires, T Dong, U Hanke, N Hoivik (2014) Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications Sensors, vol 14, no 8, pp 1545815479 N T Thuy, P D Tam, M A Tuan, L A Tuan, L T Tam, V V Thu, N V Hieu, N D Chien (2012) Detection of pathogenic microorganisms using biosensor based on multi-walled carbon nanotubes dispersed in DNA solution Current Applied Physics, vol 12, pp 15531560 N T Thuy, P D Tam, M A Tuan, N D Chien, V V Thu (2013) Impact parameters investigation of DNA immobilisation process on DNA sensor response International Journal of Nanotechnology, vol 10, p 146153 90 O A Farghaly, R S A Hameed, A.-A H Abu-Nawwas (2014) Analytical Application Using Modern Electrochemical Techniques International Journal of Electrochemical Science, vol 9, pp 32873318 91 O A Sadik, A O Aluoch, A Zhou (2009) Status of biomolecular recognition using electrochemical techniques Biosensors and Bioelectronics, vol 24, no 9, pp 2749 2765 92 O Lazcka, F J Del Campo, and F X Munoz (2007) Pathogen detection: A perspective of traditional methods and biosensors Biosensors and Bioelectronics, vol 22, pp 12051217 110 93 P D Tam, M A Tuan, N V Hieu, N D Chien (2009) Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetricbased DNA sensor Physica E: Low-Dimensional Systems and Nanostructures, vol 41, pp 15671571 94 95 P D Tam, M A Tuan, T Q Huy, L A Tuan, N V Hieu (2010) Facile preparation of a DNA sensor for rapid herpes virus detection Materials Science and Engineering: C, vol 30 pp 11451150 P D Tam, N V Hieu, N D Chien, L A Tuan, M A Tuan (2009) DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection Journal of Immunological Methods, vol 350, pp 118-124 96 97 P Domachuk, K Tsioris, F G Omenetto, D L Kaplan (2010) Bio-microfluidics: Biomaterials and biomimetic designs Advanced Materials, vol 22, no 2, pp 249 260 P J Conroy, S Hearty, P Leonard,  (2009) Antibody production, design and use for biosensor-based applications Seminars in Cell and Developmental Biology, vol 20 pp 1026 98 99 P Mashazi, P Tetyana, S Vilakazi, T Nyokong (2013) Electrochemical impedimetric immunosensor for the detection of measles-specific IgG antibodies after measles infections Biosensors and Bioelectronics, vol 49, pp 3238 P echt, K Länge, T J Huang, A Manz (2012) Revisiting lab-ona-chip technology for drug discovery Nature Reviews Drug Discovery, vol 11, no 8, pp 620632 100 P Tabeling (2010) Introduction to microfluidics Oxford University Press 101 R A B da Silva, E G N de Almeida, A C Rabelo, A T C da Silva, L F Ferreira, E M Richter (2009) Three electrode electrochemical microfluidic cell: Construction and characterization Journal of the Brazilian Chemical Society, vol 20, no 7, pp 12351241 102 R E Ionescu, S Herrmann, S Cosnier, R S Marks (2006) A polypyrrole cDNA electrode for the amperometric detection of the West Nile Virus Electrochemistry Communications, vol 8, no 11, pp 17411748 103 R Genỗ, D Murphy, A Fragoso, M Ortiz,  (2011) Signal-enhancing thermosensitive liposomes for highly sensitive immunosensor development Analytical Chemistry, vol 83, no 2, pp 563570 104 R S Hodges, R J Heaton, J M R Parker, L Molday, R S Molday (1988) AntigenAntibody Interaction synthetic peptides define linear antigenic determinants recognized by monoclonal antibodies directed to the cytoplasmic carboxyl terminus of rhodopsin Journal of Biological Chemistry, vol 263, no 24, pp 1176811775 105 R Wang, J Lin, K Lassiter, B Srinivasan, L Lin, H Lu, S Tung, B Hargis, W Bottje, L Berghman, Y Li (2011) Evaluation study of a portable impedance 111 biosensor for detection of avian influenza virus Journal of Virological Methods, vol 178, pp 5258 106 R Wang, Y Wang, K Lassiter, Y Li, B Hargis, S Tung, L Berghman, W Bottje (2009) Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1 Talanta, vol 79, pp 159164 107 S Bhattacharya, A Datta, J M Berg, S Gangopadhyay (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength Journal of Microelectromechanical Systems, vol 14, no 3, pp 590597 108 S Choi, J Chae (2010) Methods of reducing non-specific adsorption in microfluidic biosensors Journal of Micromechanics and Microengineering, vol 20, p 075015 109 S Choi, M Goryll, L Y M Sin, P K Wong, J Chae (2010) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins Microfluidics and Nanofluidics, vol 10, no 2, pp 231247 110 S D Kim, K R Shin, B T Zhang (2003) Molecular immunocomputing with application to alphabetical pattern recognition mimics the characterization of ABO blood type 2003 Congress on Evolutionary Computation, CEC 2003 - Proceedings, vol 4, pp 25492556 111 S Dulay, P Lozano-Sánchez, E Iwuoha, I Katakis,    (2011) Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry Biosensors and Bioelectronics, vol 26, no 9, pp 38523856 112 S K Arya, P Kongsuphol, C C Wong, L J Polla, M K Park (2014) Label free biosensor for sensitive human influenza virus hemagglutinin specific antibody detection using coiled-coil peptide modified microelectrode array based platform Sensors and Actuators B: Chemical, vol 194, pp 127133 113 S K Srivastava, R Ramaneti, M Roelse, H D Tong, E X Vrouwe, A G M Brinkman, L C P M de Smet, C J M van Rijn, M A Jongsma (2015) A generic microfluidic biosensor of G protein-coupled receptor activation-impedance measurements of reversible morphological changes of reverse transfected HEK293 cells on microelectrodes RSC Advances, vol 5, no 65, pp 5256352570 114 S Liébana, A Lermo, S Campoy, M P Cortés, S Alegret, M I Pividori (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing Biosensors and Bioelectronics, vol 25, pp 510513 115 S Liu, Q Lin, X Zhang, X He, X Xing, W Lian, J Huang (2011) Electrochemical immunosensor for salbutamol detection based on CS-Fe 3O4-PAMAM-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification Sensors and Actuators B: Chemical, vol 156, no 1, pp 7178 112 116 S Prakash, M Pinti, B Bhushan (2012) Theory, fabrication and applications of microfluidic and nanofluidic biosensors Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol 370, no 1967 pp 22692303 117 S Thobhani, S Attree, R Boyd, N Kumarswami, J №ble, M Szymanski, R A Porter (2010) Bioconjugation and characterisation of gold colloid-labelled proteins Journal of Immunological Methods, vol 356, pp 6069 118 S V N T Kuchibhatla, A S Karakoti, D Bera, S Seal (2007) One dimensional nanostructured materials Progress in Materials Science, vol 52, no 5, pp 699913 119 T M Anh, S V Dzyadevych, M C Van, N J Renault, C N Duc, J M Chovelon (2004) Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites Talanta, vol 63, pp 365370 120 T M Anh, S V Dzyadevych, N Prieur, C N Duc, T D Pham, N J Renault, J M Chovelon (2006) Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor Materials Science and Engineering C, vol 26, pp 453456 121 T Q Huy, N T H Hanh, P V Chung, D D Anh, P T Nga, M A Tuan (2011) Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors Applied Surface Science, vol 257, pp 70907095 122 T Ramon-Marquez, A L Medina-Castillo, J F Fernandez-Sanchez, A FernándezGutiérrez (2015) Evaluation of different functional groups for covalent immobilization of enzymes in the development of biosensors with oxygen optical transduction Analytical Methods, vol 7, pp 29432949 123 T T N Lien, T D Lam, V T H An, T V Hoang, D T Quang, D Q Khieu, T Tsukahara, Y H Lee, J S Kim (2010) Multi-wall carbon nanotubes (MWCNTs)doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS Talanta, vol 80, pp 11641169 124 T W Lewis, G G Wallace, C Y Kim, D Y Kim (1997) Studies of the overoxidation of polypyrrole Synthetic Metals, vol 84, pp 403404 125 U Jarocka, R Sawicka, A Góra-Sochacka, A Sirko, W Zagórski-Ostoja, J Radecki, H Radecka (2014) Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum Biosensors and Bioelectronics, vol 55, pp 301306 126 V Towne, Q Zhao, M Brown, A C Finnefrock (2013) Pairwise antibody footprinting using surface plasmon resonance technology to characterize human papillomavirus type 16 virus-like particles with direct anti-HPV antibody immobilization Journal of Immunological Methods, vol 388, no 12, pp 17 127 W Qu, X Xiong, W Hu, P Zhang, Q Luo, S Zhang (2012) Surface enhancement of WO3 nanowires toward the oxidation and electrochemical detection of honokiol in 113 traditional Chinese medicine Colloids Surfaces B: Biointerfaces, vol 100, pp 103 106 128 W W Chow, K F Lei, G Shi, W J Li, Q Huang (2004) Micro Fluidic Channel Fabrication by PDMS-Interface Bonding Micro, vol 5275, no 852, pp 141148 129 W Wernet (1991) Thermoplastic and elastic conducting polypyrrole films Synthetic Metals, vol 41, no 3, pp 843848 130 X J Jiang, W E Gan, S P Han, H J Zi, Y Z He (2009) Design and application of a novel integrated electrochemical hydride generation cell for the determination of arsenic in seaweeds by atomic fluorescence spectrometry Talanta, vol 79, pp 314318 131 X Wang, M Shao, G Shao, Y Fu, S Wang (2009) Reversible and efficient photocurrent switching of ultra-long polypyrrole nanowires Synthetic Metals, vol 159, pp 273276 132 X Yuan, D Fabregat, K Yoshimoto, Y Nagasaki (2012) Development of a highper mechanism Colloids Surfaces B: Biointerfaces, vol 99, pp 4552 133 X Zhao, Y.-C Tsao, F.-J Lee, W.-H Tsai, C.-H Wang, T.-L Chuang, M.-S Wu, C.-W Lin (2016) Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies Journal of Virological Methods, vol 233, pp 1522 134 Y Chen, Y Yang, Y Tu (2013) An electrochemical impedimetric immunosensor for ultrasensitive determination of ketamine hydrochloride Sensors and Actuators B: Chemical, vol 183, pp 150156 135 Y Han, X Qing, S Ye, Y Lu (2010) Conducting polypyrrole with nanoscale hierarchical structure Synthetic Metals, vol 160, pp 11591166 136 Y J Yoon, K H H Li, Y Z Low, J Yoon, S H Ng (2014) Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent Sensors and Actuators B: Chemical, vol 198, pp 233238 137 Y Kumada, K Hamasaki, A Nakagawa, E Sasaki, T Shirai, M Okumura, M Inoue, M Kishimoto (2013) Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding Journal of Immunological Methods, vol 400401, pp 7077 138 Y Li, R Qian (2000) Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions Electrochimica Acta, vol 45, pp 17271731 139 Y Li, B Hargis, S Tung, L Berghman, W Bottje, R Wang, Z Ye, M Varshney, B Srinivasan (2010) Methods and Systems for Detection of Contaminants Patent US 2010/0120016 A1 114 140 Y Liu, X Liu, X Wang (2011) Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study Nanoscale Research Letters, vol 6, pp 111 141 Y Wang, Q He, Y Dong, H Chen (2010) In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose Sensors and Actuators B: Chemical, vol 145, no 1, pp 553560 142 Y Y Lin, G Liu, C M Wai, Y Lin (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons Electrochemistry Communications, vol 9, pp 15471552 143 Z Herrasti, I Etxabe, J M Mitxelena, I Gabilondo, M P Martínez, F Martínez (2013) Development and integration of an electrochemical system in a LOC device for DNA detection Sensors and Actuators B: Chemical, vol 189, pp 6670 144 Z Herrasti, I Etxabe, J M Mitxelena, M P Martínez, F Martínez (2012) Development and integration of an electrochemical system in a LOC device for DNA detection Procedia Engineering, vol 47, pp 2528 145 Z Kenneth D McClatchey (2002) Clinical Laboratory Medicine Lippincott Williams & Wilkins, pp 149 146 Z M Gvozdenovic, B Z Jugovic, J S Stevanovic, B N Grgur (2014), Electrochemical synthesis of electroconducting polymers Polymers, vol 68 (6), pp 673-684 147 Z Nie, C A Nijhuis, J Gong, X Chen, A Kumachev, A W Martinez, M Narovlyansky, G M Whitesides (2010) Electrochemical sensing in paper-based microfluidic devices Lab Chip, vol 10, no 4, pp 477483 115 116 ... triển cảm biến sinh học điện hóa  tng quan tình hình nghiên c u cm bin sinh hn hóa th gii ti Vi? ??t Nam, tác gi nhn thi vi vi? ??c tip c n phát trin cm bin sinh. .. n hóa có s u thu sinh hc cht c dn  tng tr[54] 1.1.2.3 Tình hình nghiên cứu cảm biến sinh học điện hóa ngồi nước Cm bin sinh. .. mu máu, vi khui dung nghiên cu bao gm: nghiên cu thit k, ch to gn k t h n cc tích hp Pt vi kênh PDMS; nghiên cu tng hn hóa dây nano polypyrrole bên vi bình

Ngày đăng: 12/03/2022, 14:27

Tài liệu cùng người dùng

Tài liệu liên quan