Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 229 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
229
Dung lượng
8,07 MB
Nội dung
TRƯỜNG ĐẠI HỌC TÀI CHÍNH – MARKETING BỘ MƠN TỐN THỐNG KÊ Giáo Trình TỐN DÀNH CHO KINH TẾ VÀ QUẢN TRỊ (Dành cho chương trình chất lượng cao) Mã số : GT – 01 – 18 Nhóm biên soạn: Nguyễn Huy Hồng (Chủ biên) Nguyễn Trung Đơng THÀNH PHỐ HỒ CHÍ MINH - 2018 MỤC LỤC Trang Lời mở đầu Một số ký hiệu Chương Một số mơ hình đại số tuyến tính áp dụng phân tích kinh tế……………….8 1.1 Mơ hình cân đối liên ngành (Mơ hình Input – Output Leontief) 1.1.1 Giới thiệu mơ hình 1.1.2 Phương pháp giải………………………………………………… 1.1.3 Các ví dụ 10 1.1.4 Bài tập 14 1.2 Một số mơ hình tuyến tính phân tích kinh tế……………………… .18 1.2.1 Mơ hình cân thị trường n hàng hóa có liên quan………………… 18 1.2.2 Mơ hình cân thu nhập quốc dân 1.2.3 Mơ hình IS – LM 21 25 1.2.4 Bài tập………………………………………………………………… 29 Thuật ngữ chương …………………………… 33 Chương Áp dụng phép tính vi tích phân hàm biến phương trình vi phân vào phân tích kinh tế kinh doanh…………………………………………………………………….34 2.1 Bài toán lãi suất hiệu đầu tư…………………………………………… 34 2.1.1 Giới hạn e toán lãi suất……………………………………………34 2.1.2 Đánh giá hiệu đầu tư……………………………………………… 36 2.1.3 Giá trị chuỗi tiền tệ……………………………………… 37 2.1.4 Bài tập………………………………………………………………… 39 2.2 Áp dụng đạo hàm phân tích kinh tế kinh doanh…………………………41 2.2.1 Các hàm số thường gặp phân tích kinh tế kinh doanh………… 41 2.2.2 Đạo hàm giá trị cận biên 43 2.2.3 Đạo hàm hệ số co dãn……………………………………………… 45 2.2.4 Đạo hàm cấp quy luật lợi ích biên giảm dần……………………… 46 2.2.5 Khảo sát hàm bình qn…………………………………………………47 2.2.6 Bài tốn tối ưu hàm biến……………………………………………49 2.2.7 Hệ số tăng trưởng (nhịp tăng trưởng)………………………………… 58 2.2.8 Bài tập 60 2.3 Áp dụng tích phân vào phân tích kinh tế kinh doanh 64 2.3.1 Bài tốn tìm hàm tổng biết hàm cận biên 64 2.3.2 Bài tốn tìm hàm quỹ vốn biết hàm đầu tư 67 2.3.3 Tính thặng dư nhà sản xuất thặng dư người tiêu dùng……….68 2.3.4 Bài tập………………………………………………………………… 69 2.4 Phương trình vi phân áp dụng kinh tế………………………………………….73 2.4.1 Tìm hàm cầu biết hệ số co dãn cầu theo giá 73 2.4.2 Biến động giá trn thị trường theo thời gian……………………… 74 2.4.3 Bài tập 77 Thuật ngữ chương …………………………… 78 Chương Áp dụng phép toán vi phân hàm nhiều biến vào phân tích kinh tế kinh doanh 79 3.1 Các hàm số nhiều biến phân tích kinh tế…………………………………79 3.1.1 Hàm sản xuất…………………………………………………………….79 3.1.2 Hàm doanh thu, chi phí, lợi nhuận………………………………………79 3.1.3 Hàm lợi ích (hàm thoả dụng)……………………………………………80 3.1.4 Điểm cân 80 3.1.5 Hàm cung, cầu thị trường n hàng hóa liên quan 81 3.2 Áp dụng đạo hàm riêng vi phân tồn phần vào phân tích kinh tế kinh doanh.82 3.2.1 Đạo hàm riêng giá trị cận biên……………………………………… 82 3.2.2 Đạo hàm riêng hệ số co dãn 85 3.2.3 Đạo hàm riêng cấp quy luật lợi ích biên giảm dần 87 3.2.4 Hàm vấn đề hiệu quy mô 88 3.2.5 Đạo hàm hàm ẩn áp dụng phân tích kinh tế 89 3.2.6 Hai hàng hóa có tính chất thay bổ sung………………………92 3.2.7 Bài tập………………………………………………………………… 93 3.3 Mơ hình cực trị khơng có điều kiện ràng buộc (tự do) nhiều biến kinh tế… 95 3.3.1 Xác định quỹ vốn lao động để tối đa hóa doanh thu, lợi nhuận…… 95 3.3.2 Xác định cấu sản phẩm để tối thiểu hóa chi phí, tối đa hóa doanh thu, lợi nhuận 99 102 3.3.3 Bài tập 3.4 Mơ hình cực trị có điều kiện ràng buộc nhiều biến kinh tế 104 3.4.1 Tối đa hóa lợi ích điều kiện ràng buộc ngân sách dành cho chi tiêu………………………………………………………………………… 104 3.4.2 Tối đa hóa sản lượng điều kiện ràng buộc ngân sách dành cho sản xuất 106 3.4.3 Tối thiểu hóa chi tiêu điều kiện giữ mức lợi ích 110 3.4.4 Tối thiểu hóa chi phí điều kiện giữ mức sản lượng……… 112 3.4.5 Tối đa hóa lợi nhuận hãng độc quyền, trường hợp không phân biệt giá bán hai thị trường………………………………………………… 115 3.4.6 Bài tập………………………………………………………………… 118 Thuật ngữ chương …………………………… 122 Phụ lục…………………………………………………………………………………… 123 Phụ lục Ma trận, định thức, hệ phương trình tuyến tính 123 Phụ lục Đạo hàm vi phân hàm số biến 151 Phụ lục Bài toán tối ưu hàm biến………………………………………….159 Phụ lục Bảng công thức nguyên hàm phương pháp tính tích phân 166 Phụ lục Đạo hàm riêng vi phân toàn phần……………………………………177 Phụ lục Bài tốn cực trị hàm nhiều biến khơng có điều kiện ràng buộc (cực trị tự do)……………………………………………………………………………… 187 Phụ lục Bài tốn cực trị có điều kiện ràng buộc phương trình (phương pháp nhân tử Lagrange) 195 Phụ lục Phương trình vi phân…………………………………………………… 200 Một số đề tham khảo…………………………………………………………….………… 204 Tài liệu tham khảo………………………………………………………………………… 209 LỜI MỞ ĐẦU Sinh viên đại học khối ngành Kinh tế Quản trị kinh doanh, học mơn Tốn cao cấp thường đặt câu hỏi: mơn học có ứng dụng phân tích kinh tế quản trị kinh doanh hay không? Nhằm trả lời cho câu hỏi này, biên soạn giáo trình: Tốn dành cho kinh tế quản trị Giáo trình tiếp thu tư tưởng tài liệu giảng dạy cho trường đại học danh tiếng giới như: _`❱a࣬ bc defg h╦ij⡧klᶑ m84qǝr Michael Hoy, John Livernois, Chris Mc Kenna, Ray Rees, Thanasis Stengos, Mathematics for Economics, The MIT Press Cambrige, Massachusetts, London, England (second edition), 2001 _`❱a࣬bc defgh╦ ij⡧klᶑm 85qǝr Laurence D Hoffmann, Gerald L Bradley, Applied Calculus For Business, Economics, and the Social and Life Sciences, The Mc Graw - Hill Companies, Inc (Expanded 10 th ed), 2010 Cũng tài liệu nước, phù hợp điều kiện, chương trình đào tạo Việt Nam như: Nguyễn Huy Hoàng – Tốn sở cho kinh tế, NXB Thơng tin Truyền thông, 2011& NXB GD, 2014 Nội dung giáo trình, trình dạng mơ hình phương pháp giải bao gồm chương phụ lục Toán cao cấp, số đề tham khảo để sinh viên, tự rèn luyện Đối tượng giáo trình sinh viên hệ đào tạo chất lượng cao, nên chương chúng tơi có giới thiệu thuật ngữ Anh – Việt, giúp sinh viên dễ dàng đọc sách tham khảo tiếng Anh Nội dung cụ thể giáo trình : Chương Một số mơ hình đại số tuyến tính mơ hình cân đối liên ngành, mơ hình IS – LM, mơ trình cân thị trường… Chương Sử dụng đạo hàm phân tích kinh tế quản trị kinh doanh như: phân tích hàm cận biên, hệ số co dãn, hệ số tăng trưởng, tối ưu hàm biến…Trình bày phương pháp sử dụng cơng cụ tích phân kinh tế quản trị kinh doanh như: tìm hàm tổng biết hàm cận biên, hàm quỹ vốn biết hàm đầu tư, tính thặng dư nhà sản xuất người tiêu dùng phương trình vi phân áp dụng phân tích kinh tế như: tìm hàm cầu biết hệ số co dãn,… Chương Trình bày ứng dụng đạo hàm riêng vi phân tồn phần phân tích kinh tế phân tích cận biên, hệ số co dãn riêng, số hình tối ưu hàm nhiều biến kinh tế tối đa hóa lợi nhuận, tối thiểu hóa chi tiêu, …Các mơ hình tối ưu có điều kiện ràng buộc: tối đa hóa lợi ích với ràng buộc ngân sách chi tiêu, … Để thuận lợi việc tra cứu kiến thức Toán cao cấp, phục vụ việc giải thích kiến thức cho phân tích kinh tế quản trị kinh doanh chúng tơi đưa vào phần phụ lục Tốn cao cấp Giáo trình TS Nguyễn Huy Hồng ThS Nguyễn Trung Đơng giảng viên có nhiều năm kinh nghiệm giảng dạy toán dành cho sinh viên khối ngành kinh tế quản trị kinh doanh, biên tập Giáo trình chắn cịn nhiều thiếu sót, mong góp ý đồng nghiệp em sinh viên Mọi ý kiến đóng góp xin gởi địa email: hoangtoancb@ufm.edu.vn nguyendong@ufm.edu.vn Xin trân trọng cảm ơn! Các tác giả MỘT SỐ KÝ HIỆU 5888 Q : Sản lượng 5889 D : Cầu 5890 S : Cung 5891 QD : Lượng cầu 5892 QS : Lượng cung 5893 P : Giá bán 5894 L : Lao động (nhân công) 5895 MPL : Hàm sản phẩm cận biên lao động 5896 K : Vốn (tư bản) 5897 : Lợi nhuận 5898 TR : Tổng doanh thu 5899 MR : Doanh thu biên 5900 TC : Tổng chi phí 5901 FC : Chi phí cố định 5902 VC : Chi phí biến đổi (chi phí khả biến) 5903 MC : Chi phí biên 5904 AC : Chi phí trung bình (chi phí bình qn) 5905 T : Tổng thuế 5906 t : thuế đơn vị sản phẩm 5907 TU : Tổng hữu dụng 5908 MU : Hữu dụng biên 5909 Y X : Hệ số co giãn Y theo X 5910 rY : Hệ số tăng trưởng Y (nhịp tăng trưởng Y) 5911 Yd : Thu nhập khả dụng 5912 I : Nhu cầu đầu tư dân cư 5913 G : Nhu cầu tiêu dùng phủ 5914 X : Nhu cầu xuất 5915 M : Nhu cầu nhập 5916 IS – LM : Đầu tư/Tiết kiệm – Nhu cầu khoản/Cung tiền Chương Một số mơ hình đại số tuyến tính áp dụng phân tích kinh tế 1.1 Mơ hình cân đối liên ngành (Mơ hình Input – Output Leontief) Trong phần này, chúng tơi xin giới thiệu mơ hình kinh tế, cơng cụ chủ yếu để giải mơ hình phép toán ma trận định thức 1.1.1 Giới thiệu mơ hình Trong kinh tế đại, việc sản xuất loại sản phẩm hàng hóa (output) địi hỏi phải sử dụng loại hàng hóa khác để làm nguyên liệu đầu vào (input) trình sản xuất việc xác định tổng cầu sản phẩm ngành sản xuất tổng thể kinh tế quan trọng, bao gồm: – Cầu trung gian từ phía nhà sản xuất sử dụng loại sản phẩm cho q trình sản xuất – Cầu cuối từ phía người sử dụng sản phẩm để tiêu dùng xuất khẩu, bao gồm hộ gia đình, Nhà nước, tổ chức xuất khẩu, Xét kinh tế có n ngành sản xuất, ngành 1, 2, , n Để thuận tiện cho việc tính chi phí cho yếu tố sản xuất, ta phải biểu diễn lượng cầu tất loại hàng hóa dạng giá trị, tức đo tiền Tổng cầu sản phẩm hàng hóa ngành i (i 1, 2, , n) ký hiệu, xi xác định bởi: x i x i1 x i2 x in b i (i 1, 2, , n) (1.1) Trong đó: xik : giá trị sản phẩm ngành xuất (giá trị cầu trung gian) bi : giá trị sản phẩm ngành i mà ngành k cần sử dụng cho trình sản i dành cho nhu cầu tiêu dùng xuất (giá trị cầu cuối cùng) Tuy nhiên, thực tế, ta thường khơng có thơng tin giá trị cầu trung gian x ik , người ta lại chủ động việc xác định tỉ phần chi phí đầu vào sản xuất Gọi aik : tỉ phần chi phí đầu vào ngành k sản phẩm ngành i, tính cơng thức: xik a ik i 1, 2, , n xk Trong +) 0 a ik 1, đây, giả thiết aik cố định ngành sản xuất i, 5888 k 1, 2, , n Người ta cịn gọi aik hệ số chi phí đầu vào ma trận +) Aaikn gọi ma trận hệ số chi phí đầu vào (ma trận hệ số kỹ thuật) +) Giả sử a ik 0,3 có nghĩa để sản xuất đồng giá trị sản phẩm mình, ngành k 0,3 đồng để mua sản phẩm ngành i phục vụ cho trình sản xuất Đặt b1 B b2 b n Ta gọi X ma trận tổng cầu B ma trận cầu cuối Khi đó, từ đẳng thức (1.1), thay x ik a ik xk có: x i a i1 x1 a i2 x 2 Hay biểu diễn dạng ma trận: x1 x a11 a a12 a1n x1 a 21 x a n n1 a in x n b i (i 1, 2, , n) b1 x b2 a22 2n 2 an a x b nn n n Tức (1.2) XAXB 1.1.2 Phương pháp giải Từ (1.2), ta cóI A X B Trong đó, I ma trận đơn vị cấp n, nếuI A khơng suy biến thì: Phụ lục Bài tốn cực trị có điều kiện ràng buộc phương trình (phương pháp nhân tử Lagrange) 7.1 Bài tốn cực trị có điều kiện ràng buộc Bài tốn Tìm cực trị hàm số : w fx1 , x2 ,…, xn fX với điều kiện : gx1 , x , …, x n gX b Lập hàm Lagrange: , … , x n , f , … , x n L x,x x,x b g 1, x , …, x n x Với : nhân tử Lagrange Điều kiện cần: Giả sử hàm f g có đạo hàm riêng liên tục lân cận điểm X x ,x , …, xn điểm đạo hàm riêng g khác Nếu hàm w fX với điều kiện gX b đạt cực trị X tồn giá trị nhân nghiệm hệ phương trình: , tử Lagrange cho x ,x ,…, x n / L L x / b g X / / f g xi i Điều kiện đủ: i 1, 2,…, n xi Giả sử hàm f g có đạo hàm riêng cấp hai liên tục điểm X điểm x1 , x2 ,…, xn , điểm dừng hàm số Lagrange Lập ma trận: g L H g2 ⋮ g g1 n 11 ⋯ g n g2 L 12 ⋯ L L ⋯ L ⋮ ⋮ ⋱ ⋮ 21 L n1 22 L n2 L 1n 2n ⋯ L nn gk g x kx1 , x2 ,…, x n; Lij L x i x jx1 , x2 ,…, x n ,;i, j, k 1, 2,…, n / / / Các định thức cấp kk 2,3,…, n 195 g g k g L L ⋮ g g L 11 L 12 L 21 ⋮ k ⋯ ⋯ 22 ⋯ k2 ⋯ ⋮⋱⋮ L k1 g k L 1k L 2k L kk Nếu 1 Hk vớik 2,3,…, n hàm w fX với điều kiện gX b đạt k giá trị cực đại điểm X Nếu H k vớik 2,3,…, n hàm w fX với điều kiện gX b đạt giá trị cực tiểu điểm X 7.2 Trường hợp hàm hai biến Xét hàm hai biến z fx, y với điều kiện gx, y b L x, y, f x, y b g x, y Bước 1: Lập hàm Lagrange: Bước 2: Giải hệ phương trình sau để tìm điểm dừng / / 0 / L f g x L/ y L x f / x 0 / / y g y b g x, y Bước 3: Giả sử Mx , y0 điểm dừng ứng với giá trị0 , ta xét định thức g1g2 H g g L L 11 21 L 12 L 22 đó: g1 g L 22 x , y 0; g 2 g /yx , y 0; L11 L/xx/x , y ,0; / x L yy x , y , / / ; L12 L 21 L/xy/x , y ,0 Trường hợp : Nếu H hàm số z fx, y với điều kiện gx, y b đạt giá trị cực đại điểm M Trường hợp 2: Nếu H hàm số z fx, y với điều kiện gx, y b đạt giá trị cực tiểu điểm M 7.3 Trường hợp hàm ba biến 196 Xét hàm ba biến w fx, y, z với điều kiện gx, y, z b Bước 1: Lập hàm Lagrange L x, y, z, f x, y, z b g x, y, z Bước 2: Giải hệ phương trình sau để tìm điểm dừng / / / 0 L f g x / L y x x / f y g / y / z 0 0 / / gz Lz f b g x, y, z / L Bước 3: Giả sử Mx , y , z0 điểm dừng ứng với giá trị0 , xét định thức ma trận H g g1 g L 11 L 21 g L H2 g1 g g L 22 32 L 23 33 22 21 g1 g / x , y , z 0; g 2 g /yx , y , z 0; g 3 g z/x , y , z 0; x L11 L xx x , y , z , / / L 13 L12 H 3 H , 11 L 31 L 12 L L g3 2 L g L 22 L yy x , y , z , / / L33 L zz x0 , y0 , z0 , / / ; L12 L 21 L/xy/x , y , z ,0; ; L 23 L 32 L/yz/x , y , z ,0; ; L13 L31 L/xz/x0 , y0 , z0 ,0 Trường hợp : Nếu H 2 0; H 3 hàm số w fx, y, z với điều kiện gx, y, z b đạt giá trị cực đại điểm M Trường hợp : Nếu H 2 0; H 3 hàm số w fx, y, z với điều kiện gx, y, z b đạt giá trị cực tiểu điểm M 2 Ví dụ Sử dụng phương pháp nhân tử Lagrange tìm cực trị hàm số z x 2y với điều kiện 3x 2y22 197 GIảI Bước 1: Lập hàm Lagrange L(x, y, ) x 2y 22 3x 2y 2 Bước 2: Giải hệ phương trình / 2x 3 0 L x 4y 2 / Ly / L 3 x y 22 3x 2y x6 y 2 2y22 3x Vậy hàm số có điểm dừng M6, 2 ứng với l = Bước 3: Kiểm tra điều kiện đủ / g g 3; g L x 22 / g 2; L L y L 11 2; // xx 4; LL L// 21 // yy 12 xy 2 Xét định thức : H 2 440 2 4 Vậy điểm M điểm cực đại Khi giá trị cực đại hàm số zCD z 6, 26 2.2 44 2 Ví dụ Sử dụng phương pháp nhân tử Lagrange tìm cực trị hàm số z 3x y với 2 điều kiện 3x 4y 208 GIảI Bước 1: Lập hàm Lagrange: L(x, y, ) 3x y 208 3x 2 4y2 Bước 2: Giải hệ phương trình / L x L/ y L 3 6 x 0 1 8 y 0 0 208 3x 4y / 1 2 x 8 y 3x 1 4y (1) 208 Từ (1) (2), ta có x4y ( x ¹ 0, y ¹ , x = 0, y = vơ lý) 2 Thay vào phương trình thứ (3), ta có 52y 208 y 4 198 y2 y (2) (3) Với y2 kết hợp với (1) (2), ta có 2 x 1 8 y 1 y2 y2 x 16 Với y kết hợp với (1) (2), ta có 2 x 1 8 y 1 y y x8 16 Vậy hàm số có hai điểm dừng: M18,2 ứng với1 ; M 28, 2 ứng với 16 16 Bước 3: Kiểm tra điều kiện đủ điểm Mixi , yi ứng với / / / / / / / i 1, 2 i / / / g x 6x; g y 8y; L xx 6; L yy 8; L xy L yx Suy g1 6x i ; g 2 8y i ; L116 i ; L 228 i ; L12 L 21 6xi8yi 6xi 6 i0 8yi08i Xét định thức: +) Tại điểm M18,2 Ta có 96 i 3xi2 4yi2 96.19.i 96.19 16 nên M1 điểm cực đại Khi giá trị cực đại hàm số z CD z8,2 3.8 2 26 8, 2 Ta có +) Tại điểm M2 H 96.19 16 0 nên M2 điểm cực tiểu Khi giá trị cực tiểu hàm số z CT z8, 2 3.8 226 199 Phụ lục Phương trình vi phân 8.1 Các khái niệm a) Định nghĩa phương trình vi phân Phương trình vi phân cấp n có dạng sau: F x, y, y / ,y // , …, y n Ví dụ Cho phương trình vi phân y/ 5x Phương trình vi phân cấp 3x ydxx ydy // / Phương trình vi phân cấp x Phương trình vi phân cấp y 3y 2y (x1)e b) Nghiệm phương trình vi phân Nghiệm phương trình vi phân hàm số khoảng I ℝ Có dạng sau: - Dạng : y f (x) - Dạng ẩn :(x, y) - Dạng tham số : x x(t) t ℝ y y(t) Nghiệm phương trình vi phân Nghiệm tổng quát : y f (x, C) , nghiệm riêng y f (x, C ) Tích phân tổng quát :(x, y, C) Nghiệm kỳ dị 8.2 Phương trình vi phân cấp Phương trình vi phân cấp có dạng tổng quát: / F(x, y, y ) hay / y f (x, y) (*) Hàm số y(x) xác định khả vi khoảng I ℝ gọi nghiệm phương trình (*) I ℝ , (x,(x)) G,x I với G tập xác định hàm f (x, y) / (x) f (x,(x)),x I Bài tốn Cauchy: Tìm hàm số y(x) nghiệm phương trình (*) thỏa điều kiện đầu y 0(x ) a) Phương trình tách biến 200 Có dạng sau: / y f (x)g(y) f (x)dx g(y)dy f1 (x)g1 (y)dx f (x)g (y)dy Phương pháp giải Phân ly biến số x dx vế y dy vế lấy tích phân hai vế Ví dụ Giải phương trình vi phân sau / y e x x sin xdx 5y 4dy / y xy 2xy GIảI / x 1) y e dy e x x dx y e C (C số) 2)x sin xdx 5y dy (2) Lấy tích phân vế phương trình (2) x sin xdx5y 4dy C x cos x y C (với C số) / 3) y xy 2xy Phương trình (3) viết lại sau xy 2 2xy xy(y 2) dy xy(y 2)dx dy dx (3) Trường hợp 1: Nếu y = 0, -2 nghiệm phương trình Trường hợp 2: Nếu y ¹ 0, -2 , chia hai vế phương trình (3) cho y(y 2) , ta dy xdx , y(y 2) Lấy tích phân hai vế phương trình trên, ta có dy y(y 2) xdx C 1 2 y 201 dyxdx C y 1 2 ln y ln y 2 x C ln y x C (với C số) y b) Phương trình vi phân tuyến tính cấp Phương trình vi phân tuyến tính cấp có dạng: / y a(x)y b(x) Trong a(x), b(x) hàm số liên tục Phương pháp giải Bước 1: Tìm nguyên hàm A( X ) U(X )A(X )DX Bước 2: Chọn thừa số tích phân v(x) e u(x) Bước 3: Nhân hai vế phương trình cho thừa số tích phân: v(x) (v(x) ¹ 0, "x) ta có / v(x)y a(x)v(x)y v(x)b(x) v(x)y/ v(x)b(x) (*) Bước 4: Lấy tích phân hai vế (*), ta v(x)y v(x)b(x)dx ⇒ y v(x) v(x)b(x)dx Ví dụ Giải phương trình vi phân sau3 / y / y với x 0, y(1) x y 2xy xe x2 GIảI / y y với x 0, y(1) x Bước 1: có nguyên hàm ln x ln x (vì x ) x Bước 2: Chọn thừa số tích phân: e ln x x 202 Bước 3: Nhân hai vế phương trình cho x , ta có x (*) / xy y x xy/ Bước 4: Lấy tích phân hai vế (*) xyxdx C ⇒ y 1 x C x C x 2 x Với điều kiện đầu y(1) 1 C 1C Vậy nghiệm phương trình: y x / 2) y 2xy xe 2x x2 Bước 1: 2x có nguyên hàm x Bước 2: Chọn thừa số tích phân: e x2 Bước 3: Nhân hai vế phương trình cho e e x2 / y 2xe x2 x2 , ta có e y x y x Bước 4: Lấy tích phân hai vế (*) x2 e x2 / (*) x 2 x C yxdx C ⇒ y e 203 MỘT SỐ ĐỀ THAM KHẢO Đề số 01 Câu Cho hàm sản xuất Cobb Douglas: Q K, L 80 K L Q : sản lượng, K : vốn, L : lao động Tính hệ số co dãn Q theo K theo L Nêu ý nghĩa Nếu nhịp tăng trưởng vốn 4% nhịp tăng trưởng lao động 6% nhịp tăng trưởng sản lượng bao nhiêu? Câu Cho hàm chi phí cận biên mức sản lượng Q MCQ 15e 0,6Q chi phí cố định 20 Tìm hàm tổng chi phí Câu Cho ma trận hệ số kỹ thuật ngành sau 0,1 0, A 0, 0,1 0,3 0, 0,3 0,1 1) Nêu ý nghĩa kinh tế phần tử hàng cột ma trận 2) Cho biết ma trận cầu cuối b 60 50 70T Tìm sản lượng ngành Câu Cho hàm tổng chi phí sau: C(Q) 4000 5Q 0,1Q (Q sản lượng) Tính chi phí biên mức sản lượng 100 Tìm Q để cực tiểu hàm chi phí bình qn Câu Một cơng ty có hàm sản xuất: QK,L 2K(L 2), K, L vốn lao động Biết giá thuê đơn vị vốn 600 USD giá thuê đơn vị lao động USD Nếu doanh nghiệp chi số tiền 15000 USD Tìm mức sử dụng K L cho sản lượng tối đa Đề số 02 Câu Thu nhập quốc dân quốc gia (Y) phụ thuộc vào vốn (K), lao động sử 0,35 dụng (L) ngân sách đào tạo năm trước (G) sau: Y 0,38K K, L, G hàm theo thời gian sau: 204 0,18 L G 0,25 t t t K(t) K (1, 2) ; L(t) L (1, 05) ; G(t) G (1, 25) Tính hệ số tăng trưởng thu nhập quốc dân Câu Một doanh nghiệp có hàm chi phí cận biên : MC(Q) 0,9Q 6Q19 , với Q sản lượng Hãy tìm hàm tổng chi phí doanh nghiệp, biết chi phí cố định 30 Hãy xác định hàm chi phí biến đổi bình quân mức sản lượng cực tiểu hóa hàm Câu Lượng đầu tư thời điểm t cho hàm số: I(t) 5t t t 1 t Biết quỹ vốn vào thời điểm xuất phát K(0) = 84 , tìm hàm quỹ vốn thời điểm t = Câu Cho mơ hình thu nhập quốc dân YCI0G0 C150 0,8(Y T) T 0,2Y Trong Y thu nhập quốc dân, I0 đầu tư, G0 chi tiêu phủ, C tiêu dùng, T thuế Tìm thu nhập quốc dân tiêu dùng trạng thái cân I0 200, G0 900 Câu Một hãng có hai sở sản xuất với hàm sản xuất có dạng: Q1 2 L1100 0,5 Q 2 2 L 2 200 0,5 Tìm phương án sử dụng nhân cơng hai sở để hãng làm lô hàng 200 đơn vị với giá thành nhỏ nhất, biết giá thuế công nhân hai sở w USD/đơn vị lao động Đề số 03 Câu Cho hàm cung hàm cầu loại hàng háo sau : 1,5Y 0,45 0,25 P ; S1,5P 0,35 Xác định hệ số co dãn cầu theo giá, theo thu nhập nêu ý nghĩa Xem xét mức tác động thu nhập tới mức giá cân 205 Câu Cho hàm sản phẩm cận biên lao động MPL 40L 0,5 Tìm hàm sản xuất ngắn hạn Q f (L) , biết Q(100) 4000 Câu Xét thị trường ba loại hàng hóa với hàm cung hàm cầu sau: QS110P1; QD1 20P1P3 QS2 2P2; QD2 40 2P2 P3 QS353P3; QD310P1 P2P3 Hãy xác định giá trị lượng cân thị trường ba hàng hóa quy tắc Cramer Câu Cho hàm chi phí trung bình doanh nghiệp cạnh tranh hoàn hảo sau: AV(Q) 12 Q Q 2 Q 10 Tìm hàm chi phí cận biên Với giá bán P 106 , Tìm Q để lợi nhuận cực đại 0,4 Câu Một cơng ty có hàm sản xuất: Q K L 0,3 , K, L vốn lao động Biết giá đơn vị vốn USD giá đơn vị lao động USD Nếu doanh nghiệp chi số tiền 1050 USD Tìm mức sử dụng vốn lao động để tối đa hóa sản lượng Đề số 04 Câu Cho biết hàm chi phí cận biên mức sản lượng Q là: MC(Q) 36 28Q12Q FC 53 Hãy tìm hàm tổng chi phí chi phí biến đổi Câu 2 Cho hàm cầu D 6P P Hãy tính hệ số co dãn cầu theo giá múc giá P nêu ý nghĩa Cho hàm đầu tư I(t) t Hãy tìm hàm quỹ vốn K(t) , biết quỹ vốn thời điểm ban đầu 100000 Câu Một doanh nghiệp độc quyền sản xuất hai loại sản phẩm Cho biết hàm cầu hai loại sản phẩm sau: Q 210P; Q 1 60 P với hàm chi phí kết hợp C 30(Q1 Q ) Hãy tìm sản lượng Q1 Q2 giá bán tương ứng để doanh nghiệp thu lợi nhuận tối đa 206 Câu Cho mô hình cân kinh tế: CI0G0; C C 0 bY T; T T0 tY Cho C 0 80; I 0 90; G 0 81; T0 20; b 0,9; t 0,1 Xác định mức cân Y Nếu C0 tăng 1% mức cân Y thay đổi nào? Câu Định K, L cho hàm chi phí C L 0, 01K ( K 0, L ) đạt giá trị nhỏ thỏa mãn điều kiện K × L = 20 Đề số 05 Câu Cho hàm doanh thu trung bình: AR Q = 60 - 3Q Tìm hàm doanh thu cận biên, MRQ Chứng minh hàm ARQ hàm MRQ có tung độ góc, độ dốc MRQ gấp đôi độ dốc ARQ Câu Cho hàm cầu loại nơng sản: D 200 50P Có 50 sở giống hệt trồng loại nông sản với hàm chi phí sở TC Q = Q (Q sản lượng) Hãy xác định lượng cung tối ưu sở giá cân thị trường Câu Cho mô hình YCI; C C 0 aY, (0 a 1); I I 0 br, (b 0); L L 0 mY nr, (m, n 0); M s L Trong Y thu nhập quốc dân, I đầu tư, C tiêu dùng, L mức cầu tiền, Ms mức cung tiền, r lãi suất Hãy xác định thu nhập quốc dân lãi suất cân Cho a 0, 7; b 1800; C 0 500; I 0 400; L 0 800; m 0, 6; n 1200; 207 s 2000 Tính hệ số co dãn thu nhập, lãi suất theo mức cung tiền điểm cân nêu ý nghĩa Câu Cho hàm sản xuất hãng Q 300 24 K L , biết giá thuê đơn vị tư K 100, giá thuê đơn vị lao động 150, giá sản phẩm Hãy xác định mức sử dụng K L để hãng thu lợi nhuận tối đa Câu Cho biết hàm cầu hàm cung: 1 D Q 1 276 2Q ; S Q 6 Q Hãy tính thặng dư người sản xuất thặng dư người tiêu dùng 208 TÀI LIỆU THAM KHẢO Nguyễn Huy Hoàng (chủ biên), Lê Thị Anh, Phùng Minh Đức, Bùi Quốc Hoàn, Phạm Bảo Lâm, Nguyễn Mai Quyên, Đoàn Trọng Tuyến, Hoàng Văn Thắng – Hướng dẫn giải tập Toán cao cấp cho nhà kinh tế, NXB ĐHKTQD, 2006& NXB Thống kê, 2007 Bộ mơn tốn – Bài tập tốn cao cấp, NXB Đại học Kinh tế Quốc dân, 2008 Nguyễn Huy Hồng – Tốn sở cho kinh tế, NXB Thơng tin Truyền thông, 2011& NXB GD, 2014 Nguyễn Thị An, Nguyễn Huy Hoàng, Giới thiệu đề thi tuyển sinh Sau đại học (2006 – 2012), Mơn Tốn Kinh tế (Phần Tốn sở cho Kinh tế), NXB Chính trị – Hành chính, 2012 Laurence D Hoffmann, Gerald L Bradley, Applied Calculus For Business, Economics, and the Social and Life Sciences, The Mc Graw - Hill th Companies, Inc (Expanded 10 ed), 2010 Michael Hoy, John Livernois, Chris Mc Kenna, Ray Rees, Thanasis Stengos, Mathematics for Economics, The MIT Press Cambrige, Massachusetts, London, England (second edition), 2011 Michael Hoy, John Livernois, Chris Mc Kenna, Ray Rees, Thanasis Stengos, Solutions Manual Mathematics for Economics, The MIT Press Cambrige, Massachusetts, London, England (second edition), 2011 A C Chiang, Fundamental Methods of Mathematical Economics, Mc GrawHill, Inc., 3rd edition, 1984 A C Chiang, Instructor’s Manual to accompany Fundamental Methods of Mathematical Economics, Mc GrawHill, Inc., 4rd edition, 2005 209 ... thức cho phân tích kinh tế quản trị kinh doanh đưa vào phần phụ lục Tốn cao cấp Giáo trình TS Nguyễn Huy Hồng ThS Nguyễn Trung Đơng giảng viên có nhiều năm kinh nghiệm giảng dạy toán dành cho. .. Quản trị kinh doanh, học mơn Tốn cao cấp thường đặt câu hỏi: mơn học có ứng dụng phân tích kinh tế quản trị kinh doanh hay không? Nhằm trả lời cho câu hỏi này, chúng tơi biên soạn giáo trình: ... trả lời cho câu hỏi này, chúng tơi biên soạn giáo trình: Tốn dành cho kinh tế quản trị Giáo trình tiếp thu tư tưởng tài liệu giảng dạy cho trường đại học danh tiếng giới như: _`❱a࣬