1. Trang chủ
  2. » Nông - Lâm - Ngư

Tài liệu Cố định ni-tơ: mối quan hệ giữa thực vật và vi khuẩn doc

11 473 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 341,19 KB

Nội dung

Cố định ni-tơ: mối quan hệ giữa thực vật vi khuẩn Nguồn: sinhhocvietnam.com Không khí gần như là một trò đùa. Không gì có thể chống lại oxy nhưng 78% không khí lại là ni- tơ. Ni-tơ thường là nguồn gốc sự sống trên trái đất và là nguồn dinh dưỡng quyết định sự vật phát triển đến mức nào, phát triển ở đâu. Vậy mà lượng lớn ni- tơ đi qua phổi hoặc lá lại không giúp ích gì cho động thực vật: một trong những nguồn tài nguyên quý giá nhất của sự sống bị bỏ phí qua từng hơi thở. Ni-tơ trôi nổi trong không khí ở dạng nguyên tử kép (N2) được khóa chặt với nhau bằng hóa chất thông qua một mối liên kết ba thẳng. Mặc dù rất cần nguyên tố này, thể sinh vật sống vừa đủ độ phức tạp khi tế bào nhân – paramecia, khoai tây hay người đều giống nhau – không biện pháp tự nhiên nào thể phá vỡ mối liên kết đó. Đây là điểm mà nhân loại bị các sinh vật tầm thường qua mặt Những dạng sự sống “đơn giản”, dụ như cyanobacteria trôi nổi trong nước hoặc nhóm vi khuẩn rhizobia lẩn khuất trong đất, thể phá vỡ sự liên kết này. Chiến công này, được gọi là sự cố định ni-tơ, biến N2 thành một dạng amoniac dễ sử dụng hơn. Bản thân thực vật không thể sử dụng ni-tơ trong không khí, nhưng chúng thể nh ờ vào vi khuẩn Kể từ năm 1920, biện pháp công nghiệp Haber-Bosch đã giúp con người tách mối liên kết 3 này, miễn là nguồn năng lượng thể nâng nhiệt độ lên 400 hoặc 500oC áp suất là 200 atmosphere. Vậy mà lớp váng trên mặt hồ bạn thể cố định ni-tơ ở nhiệt độ phòng áp suất khí quyển bình thường. Các cây đậu họ đậu khả năng tự tạo ni-tơ từ vi khuẩn khả năng phá vỡ mối liên kết ba của N2 ở nhiệt độ phòng. Trong những thập niên gần đây, các nhà khoa học đã nghiên cứu tìm cách đưa những khả năng đó vào hoa màu. Một số loài thực vật nhất định những giải pháp gọn gàng hơn. Tự bản thân chúng, đậu nành, đậu, cây tổng quán sủi những loài khác, thể cố định ni-tơ tốt hơn bất kỳ người nào. Thực chất chúng hấp dẫn những vi khuẩn di cư vào và giúp chúng làm nhiệm vụ trên. Trong một xã hội vượt ranh giới cũng phức tạp như xã hội loài người, vi khuẩn thực vật trao đổi những tín hiệu những bài kiểm tra thiện ý hóa chất cho đến khi vi khuẩn di cư ổn định, thường là trong những hốc hoặc chỗ lồi đặc biệt của cây, bắt đầu cố định ni-tơ. Với sự giúp sức từ những người bạn này, các loài cây trên thể lấy được phân bón từ không khí. Điều này cũng đủ để con người phải ghen tị với giống đậu nành. Sản xuất phân bón thông qua phương pháp Haber-Bosch cho mùa màng tiêu tốn nguồn năng lượng khủng khiếp. khi chi phí năng lượng đang lên cao, chưa kể đến đốt cháy năng lượng hóa thạch làm tăng lượng khí nhà kính, dân số toàn cầu tăng nhanh đòi hỏi nhiều thực phẩm hơn nữa. Chỉ đối với 1/3 dân số thế giới, nhiều thực phẩm hơn nghĩa là nhiều phân bón nhân tạo hơn. Mọi việc sẽ đơn giản hơn nếu lương thực thực phẩm thể sử dụng ni-tơ từ N2 trong không khí. Allan Downie, thuộc Trung tâm John Innes ở Norwich, Anh, tác giả một bài báo gần đây về tín hiệu thực vật-vi khuẩn trên tờ Annual Review of Plant Biology, cho biết “ Mọi người lúc nào cũng hỏi tôi khi nào chúng ta thể tạo ra bột mì tự cố định ni-tơ ”. Downie cho biết mọi chuyện không đơn giản như thế. Ông đã bắt đầu nghiên cứu việc cố định ni-tơ trong suốt những năm 1980 nhận thấy còn cả một quãng đường dài phía trước. Tin tốt là khoa học đang tăng tốc. Nghiên cứu cả thực vật vi khuẩn của chúng đã phát hiện ra sự đa dạng mới, bất ngờ trong việc cố định ni-tơ đem lại cho các nhà khoa học những mối quan hệ hợp tác mới để tìm ra những đầu mối vận hành chế. Các nhà khoa học cũng đang bổ sung kiến thức về cách các cây họ đậu dùng một loại danh sách hóa chất đặc biệt để tìm thương thảo với những “công nhân” vi khuẩn tiềm năng. Khoa học đang tìm cách học lại quá trình này, theo dõi từng sắc thái của nó. Thậm chí khi người thầy ở đây chỉ là những chấm nhỏ nằm trong đất. Các loài vi khuẩn cố định ni-tơ Theo David Dalton thuộc ĐH Reed ở Portland, Oregon, quyền năng nằm trong những chấm nhỏ đó. Một số loài, dụ như cyanbacteria, trôi nổi trong đại dương xử lý nhiều ni-tơ đến mức chúng được công nhận là nguồn lực chính của thành phần hóa học đại dương. Phần lớn ni-tơ trong cánh rừng thông già Douglas thuộc tây bắc Thái Bình Dương thể xuất phát từ loài Nostoc cyanbacteria. Vài loài địa y Lobaria bao gồm Nostoc ở dạnh xanh tươi rậm rạp, sau 80 năm thể thiết lập những thuộc địa khổng lồ lên tận ngọn cây. Dalton von “ Giống như người ta đổ đi một chuyến tàu đầy rau diếp vậy .” Những loài cố định ni-tơ khác thiết lập các mối quan hệ lỏng lẻo với thực vật khi định cư gần rễ hoặc chuyển vào các mô mà không chỗ trú ẩn đặc biệt nào cả. Một trong những loài nổi tiếng nhất, hiện tên Gluconacetobacter diazotrophicus , xuất hiện trong cây mía ở Brazil vào năm 1988. Nó thuộc vào một nhóm vi khuẩn được biết là thể sản xuất z-xít a-xê-tic. Nhưng dưới những điều kiện thích hợp, loài này sản xuất đủ ni-tơ để giúp mía tăng trưởng. Tuy nhiên, các mối quan hệ chặt chẽ nhất gồm nhiều cấu trúc chuyên biệt hơn, dụ như những mô riêng rẽ trong cây. Cycads mà Dalton mô tả là trông như “những cây cọ béo lùn” mọc những khối u làm chỗ trú cho cyanobacteria. một loài cây ra hoa khá lạ lùng, Gunnera, chấp nhận những túi cyanobacteria trong rễ. Chỉ cần cắt một đoạn rễ Gunnera ngay dưới một trong những cái lá cỡ chiếc ô của nó, ta sẽ thấy những đốm màu xanh lục. Những quyển sách giáo khoa cũng đưa các cây họ đậu vào sơ đồ cố định ni- tơ, nhưng giống vi khuẩn Frankia tạo nên những nốt nhỏ trong các cây không thuộc họ đậu, dụ như cây tổng quán sủi cây thanh mai. Những loài cố định ni-tơ trông “cực kỳ xương xẩu” này sống trong các chùm nốt trên rễ. Cách sắp xếp thực vật-vi khuẩn nổi tiếng nhất xuất hiện giữa vi khuẩn cây họ đậu. Mỗi cây tuyển dụng mới lực lượng lao động của mình, vi khuẩn đi vào những sợi rễ nhỏ xíu sau này trở thành những nốt nhà máy ni-tơ nhìn như những hạt đậu hồng nhạt. Màu hồng là do hemoglobin thực vật, họ hàng của phân tử vận chuyển oxy trong máu động vật vú. “Sự bùng nổ dữ dội” là từ mà John Howieson, ĐH Murdoch ở Australia, mô tả sự phát hiện vô số các loài vi khuẩn cố định ni-tơ trong nốt cây đậu những năm gần đây. Các nhà sinh vật học biết rằng nhiều vi sinh vật xuất hiện bên trong các nốt nhưng không cách đảm bảo nào tách những vi khuẩn cố định những vi khuẩn trá hình. Trong hơn 100 năm, các nhà sinh học đã ghi nhận những nốt chỉ hình thành với vi khuẩn thuộc nhánh alpha của nhóm Proteobacteria, đặc biệt là những vi khuẩn trong họ Rhizobiaceae. Tuy nhiên, bắt đầu từ năm 2000, các nhà nghiên cứu đã phát hiện các nodulator trong một nhánh hoàn toàn mới mang tên beta. Nhóm đầu tiên, thành viên của họ Burkholderia, được phát hiện cố định ni-tơ cho các cây mimosa ở Brazil. “ Chúng ta đã quen với những tổ màu xám đáng chán, màu trắng sữa bây giờ những tổ màu hồng này xuất hiện .” Bộ sưu tập của Howieson xuất hiện thêm những vi khuẩn cố định ni-tơ bao gồm “những thứ mỏng mảnh, phát triển nhanh màu hồng lạ lùng” cũng như “thứ mỏng mảnh màu cam chưa được đặt tên.” Một chuyên gia nữa về nốt cố định ni-tơ, Janet Sprent thuộc ĐH Dundee ở Scotland, nhớ lại thời hệ thống hóa đơn giản hơn nhiều. “ Cách đây một thế kỷ mọi thứ trật tự hơn nhiều, còn bây giờ chúng tôi đang đi sâu vào một mớ hỗn độn .” Sprent chỉ ra các nhà khoa học thậm chí còn chưa bắt đầu khảo sát nhiều loài cây nhiệt đới, đặc biệt là các cây họ đậu, mà rất thể chứa những loài vi khuẩn cố định ni-tơ mới. Tìm hiểu quá trình hợp tác của thực vậtvi khuẩn Đối với thực vật, việc cho phép vi khuẩn cộng sinh là một điều mạo hiểm. Những vị khách phải biết giữ bản thân không sinh sôi ngoài tầm kiểm soát, phá hủy cấu trúc cây hoặc can thiệp vào chế hóa học. Bù lại loài vi khuẩn hội không bị người chủ trọ - nguồn cung cấp thức ăn - nổi loạn thiết lập chế phòng thủ đối với chúng. vậy các nhà nghiên cứu đang khám phá những tín hiệu trao đổi tạo nên sự thỏa thuận. Bruce Hungate, ĐH Bắc Arizona, Flagstaff, cho biết “ Chúng ta đang một dạng đối thoại mà chúng ta chưa thể diễn dịch được hết .” Ann M. Hirsch thuộc ĐH California, Los Angeles, cho biết “ Tôi vẫn nghĩ nó theo cách của một vũ điệu, nhưng lẽ do tôi học ba-lê quá lâu .” Ann cộng sự Angie Lee, hiện thuộc ĐH California, San Diego, mô tả quá trình này theo mô hình vũ ba-lê trong công trình đăng trên Plant Signaling & Behavior năm 2006. Đậu nành (ảnh trên bên trái), một loại cỏ ba lá dại châu Phi (ảnh trên bên phải) những cây cùng họ phát triển những nốt rễ cổ điển. Cỏ bãi biển châu Phi không phát triển nốt nhưng cũng chứa vi khuẩn Burkholderia cố định ni-tơ (ảnh dưới bên trái). Gunnera (ảnh dưới bên phải) cũng tìm một loài vi khuẩn như cyanobacteria để cố định ni-tơ trong túi rễ. ( Ả nh: USDA, Howieson, E. Cahill, iStockphoto ) Họ cho rằng quá trình này bắt đầu bằng một điệu vũ pas de deux giữa các sợi rễ, phần phóng thích các hợp chất flavonoid vào trong đất, vi khuẩn xung quanh, đến lượt mình, giải thoát các phân tử được gọi là yếu tố nốt. Chỉ cần lượng rất ít những chất này cũng khiến cho can-xi nhanh chóng di chuyển vào các sợi rễ (theo Hirsch là điệu Allergo). Thường chỉ trong vài giây phóng một đợt yếu tố nốt, can-xi cũng đổ vào các tế bào sợi rễ. Thêm vài phút nữa, hàm lượng can-xi bắt đầu lao vào lặp đi lặp lại, tiếp nối trong vòng một giờ. Theo như Hirsch tính toán thì điều này thể kích hoạt những gien xây dựng nốt. Nếu tất cả đều thuận lợi, những sợi rễ nhỏ xoắn lại thành các móc cuối cùng xoắn lại xung quanh vi khuẩn. Ở nhiều loài cây họ đậu, những tế bào rễ bị cuốn mở ra một đường ngầm bên trong, hoặc sợi lây nhiễm, dẫn vi khuẩn vào những mô – nơi trú ẩn của chúng – cuối cùng phồng ra thành những nốt. Vũ điệu ba-lê này còn hàm chứa nhiều điều ngạc nhiên. Mùa trước, hai loài vi khuẩn ORS278 BTAi1 hóa ra không yếu tố nốt. Thế nhưng vi khuẩn vẫn thể hình thành nốt sần ở một số loài cây họ đậu nhất định theo một cách đáng nể. Sharon Long, ĐH Stanford tỏ thái độ tích cực trước phát hiện này. “ Điều này khá quan trọng. Hiện công trình chưa trả lời được điều gì nhưng thực sự mở ra những câu hỏi mới .” Thực vật thể khá kỹ tính khi chọn cho mình bạn nhảy vi khuẩn. dụ, công trình hiện nay của Howieson phát hiện rằng hai loài cỏ ba lá chọn dòng vi khuẩn Rhizobium leguminosarum cụ thể thậm chí nếu chúng hiếm trong môi trường đất xung quanh. Howieson cộng sự đã viết về điều này trên tờ Soil Biology and Biochemistry tháng 3 rằng một loài vi khuẩn đặc biệt hiệu quả rốt cuộc sẽ là người cộng sự lý tưởng của cỏ ba lá thậm chí khi dân số của chúng kém gấp 100 lần so với những cộng sự khác kém hiệu quả hơn, chỉ hình thành nốt nhưng không cố định ni-tơ.Những nhóm nghiên cứu khác đang kiểm nghiệm những gien mà thực vật sử dụng trong quá trình thương lượng với người cộng sự của mình. Loại gien SymRK mã hóa một loại protein liên quan đến quá trình tiếp nhận các tín hiệu nốt – lời hồi đáp của vi khuẩn đối với tín hiệu tìm cộng sự của thực vật. Tuy nhiên, theo Didier Bogusz thuộc Viện Nghiên cứu Phát triển ở Montpellier, Pháp, thì SymRK còn những nhiệm vụ khác trong cây họ đậu. Những công trình trước đó cũng cho thấy SymRK hoạt động trong mối quan hệ lâu đời với cây họ đậu, tương tự như 3/4 các loài thực vật, cho phép hình thành những mối quan hệ mật thiết giữa rễ nấm. Mạng lưới nấm bám chặt rễ này được gọi là arbuscular mycorrhizae đưa chất dinh dưỡng như phốt-phát từ đất lên cây. Vi khuẩn cyanobacteria tự do, dụ như loài Mastigocladus laminosus này, cố định được nhiều ni-tơ tỏ ra vai trò quan trọng trong những vòng dinh dưỡng toàn cầu. (Ảnh: G. Wanner, Getty Images) Những cây phi lao Australia với tán lá mượt như lông tơ không phải thuộc họ đậu, chúng không kết thân với những vi khuẩn nhóm đậu. Hiện nay, Bogusz phát hiện rằng, giống như cây họ đậu, loài cây này dựa vào SymRK khi chúng nhóm với các vi khuẩn cố định ni-tơ khác, Frankia. Bogusz cộng sự cũng trình bày trên tờ Proceedings of the National Academy of Sciences ngày 25 tháng 3. Loài cây này cũng dùng SymRK để nối với một phiên bản mạng lưới nấm. Phát hiện này ủng hộ cho một lý thuyết rằng thực vật sử dụng các nốt cố định ni-tơ đã tiến hóa năng lượng bằng cách mượn những yếu tố của hệ thống cổ xưa rộng rãi để hình thành mối quan hệ cộng tác với nấm. Tương lai của cây lương thực cố định ni-tơ Bogusz cho rằng phát hiện ra những gien cố định ni-tơ tạo ra khả năng cố định ni-tơ trên những mùa vụ không phải đậu “rất thể xảy ra trong thời gian dài”. Theo Eric Triplett, ĐH Florida ở Gainesville, cho biết hiện tại thể là thời điểm thích hợp cho một đợt thúc đầy đối với vụ mùa tái biến đổi. Những nỗ lực ban đầu vào những năm 1970 không tiến triển nhiều, nhưng do không nhiều quỹ hỗ trợ liên tục công cụ sẵn như ngày nay. Năm trước ông đã thuyết trình trước Hội đồng Nghiên cứu quốc gia về triển vọng của thành công này. Triplett phản đối ý tưởng cố gắng dời khả năng của cây họ đậu tìm kiếm vi khuẩn thích hợp phát triển nốt sang một loài khác về căn bản như ngô. Muốn thực hiện điều đó cần phải điều chỉnh cả một bộ những gien thực vật chuyên biệt để tìm những cộng sự vi khuẩn đặc biệt. “Tôi cảm giác rằng, mọi chuyện không phải là quá khó. Đối với tôi, cách duy nhất cần làm là biến đổi thực vật trực tiếp với những gien cố định ni-tơ.” Vi khuẩn thực hiện phép màu với hơn 20 loại gien, nhưng thực vật chỉ một số phiên bản của chúng. Ông đề nghị đưa chế này vào một trong những bộ máy chuyển hóa năng lượng vốn đã hoạt động trong tế bào thực vật, như năng lượng sinh ty lạp thể hoặc lạp lục bắt ánh sáng. “ Tôi không nghĩ sẽ điều gì quan trọng hơn bạn thể làm để cung cấp thực phẩm cho vùng hạ Sahara châu Phi .” Thậm chí nếu đưa các gien cố định ni-tơ trực tiếp vào các cây hứa hẹn một phương pháp dễ dàng hơn thì điều này vẫn còn khó khăn. dụ, Downie lưu ý sẽ tốn kém thỏa hiệp nếu chế phức tạp này thể xuất hiện ở một loại cây mới. Dù khả năng hóa sinh đó, thực vật vẫn sẽ cần một lượng lớn năng lượng để phá vỡ liên kết ba ni-tơ. Những tính toán dựa trên các loại enzyme vi khuẩn ước lượng rằng xử lý một phân tử của N2 cần nhiều phân tử ATP, đơn vị năng lượng của tế bào, nhiều hơn xử lý phân tử CO2 trong quang hợp ít nhất 8 lần. Năng lượng này sẽ không được dành cho những chức năng khác, như tạo lá hoặc hạt đậu. Những vụ mùa đậu tự tạo ni-tơ thường cho năng suất thấp hơn ngô bột mì được bón phân. vậy cho thêm quyền năng cố định ni-tơ thể khiến cho một số loài giảm hiệu suất nông nghiệp. Downie cho biết “Bạn sẽ không nhận được gì từ hư không. Liệu bạn sẽ chấp nhận đánh đổi năng suất không?” Việc năng suất giảm thể là một bất lợi nhưng theo Vaclav Smil, ĐH Mani-tơba, Canada, một cách nhìn khác đối với vấn đề nguồn cung cấp ni-tơ. Ông đã theo dõi việc sử dụng ni-tơ trên thế giới ông không hề hy vọng các kỹ sư di truyền sẽ tạo ra một loại thực phẩm tự sản xuất phân bón trong thời gian ngắn. “ Họ đã hứa hẹn điều đó từ rất lâu rồi.” “ Với khẩu phần như ngày nay, khoảng 40% tất cả thực phẩm được sản xuất nhờ vào phân bón nhân tạo ”. Nhưng sự phụ thuộc đó đến từ một hệ thống thực phẩm mà ông gọi là “đều bị quản lý sai lầm”. Smil đưa dữ liệu về lượng dùng thừa thải đi từ một bảng. dụ, ngân quỹ phân bón khác nhau khá nhiều dựa vào chọn lựa thực phẩm, đặc biệt là bao nhiêu nông sản thịt sữa một quốc gia tiêu thụ. Khẩu phần của Mỹ, dựa vào khoảng 50% phân bón nhân tạo, tiêu thụ thịt gần như gấp 5 lần trên mỗi khẩu phần châu Á. [...]...Những thử thách của vi c cung cấp ni-tơ cho thói quen thực phẩm hiện nay của thế giới là rất thật nhưng ông nghĩ rằng thật sai lầm khi chờ sự ra đời của bột mì cố định ni-tơ “Hãy giảm sự thất thoát thực phẩm Trước khi đưa liệu pháp gien vào tất cả mọi thứ, hãy thay đổi khẩu phần ăn.” . Cố định ni-tơ: mối quan hệ giữa thực vật và vi khuẩn Nguồn: sinhhocvietnam.com Không khí gần như là một trò. thể chứa những loài vi khuẩn cố định ni-tơ mới. Tìm hiểu quá trình hợp tác của thực vật – vi khuẩn Đối với thực vật, vi c cho phép vi khuẩn cộng sinh là

Ngày đăng: 25/01/2014, 04:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w