Information Theory, Inference, and Learning Algorithms phần 5 ppsx
... R(f) does 0 1 2 0 0. 25 0 .5 0. 75 1 1+f H_2(f) 0 0.1 0.2 0.3 0.4 0 .5 0.6 0.7 0 0. 25 0 .5 0. 75 1 R(f) = H_2(f)/(1+f) Figure 17.1. Top: The information content per source symbol and mean transmitted ... recommend Maynard Smith and Sz´athmary (19 95) , Maynard Smith and Sz´athmary (1999), Kondrashov (1988), May- nard Smith (1988), Ridley (2000), Dyson (19 85) , Cairns-Smith (1...
Ngày tải lên: 13/08/2014, 18:20
... clustering algorithms, and neural networks. Why unify information theory and machine learning? Because they are two sides of the same coin. In the 1960s, a single field, cybernetics, was populated by information ... scientists, and neuroscientists, all studying common problems. Information theory and machine learning still belong together. Brains are the ultimate compression...
Ngày tải lên: 13/08/2014, 18:20
... 4096 (a) -2 -1 .5 -1 -0 .5 0 2 2 .5 3 3 .5 4 4 .5 5 Energy -2 -1 .5 -1 -0 .5 0 2 2 .5 3 3 .5 4 4 .5 5 (b) 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 2 2 .5 3 3 .5 4 4 .5 5 sd of Energy 0.0 15 0.02 0.0 25 0.03 0.0 35 0.04 0.0 45 0. 05 2 ... 5 10 15 20 p (1) (x) 0 5 10 15 20 p (2) (x) 0 5 10 15 20 p (3) (x) 0 5 10 15 20 p (10) (x) 0 5 10 15 20 p (100)...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 10 ppsx
... inputs. 1e-06 1e- 05 0.0001 0.001 0.01 0.1 1 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5 5. 5 (N=96) N=204 N=408 (N=204) N=816 N=96 1e- 05 0.0001 0.001 0.01 0.1 1 1 1 .5 2 2 .5 3 3 .5 4 j=3 j=4 j =5 j=6 (a) (b) Figure ... K/S (50 .4) (see figure 50 .2 and exercise 50 .4 (p .59 4)) then add the ideal soliton distribu- tion ρ to τ and normalize to obtain the robust soliton distribution, µ: µ...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 2 ppt
... 0000 b 0.0128 6.3 6 001000 c 0.0263 5. 2 5 00101 d 0.02 85 5.1 5 10000 e 0.0913 3 .5 4 1100 f 0.0173 5. 9 6 111000 g 0.0133 6.2 6 001001 h 0.0313 5. 0 5 10001 i 0. 059 9 4.1 4 1001 j 0.0006 10.7 10 1101000000 k ... 6.9 7 1010000 l 0.03 35 4.9 5 11101 m 0.02 35 5.4 6 110101 n 0. 059 6 4.1 4 0001 o 0.0689 3.9 4 1011 p 0.0192 5. 7 6 111001 q 0.0008 10.3 9 110100001 r 0. 050 8 4.3...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 3 pdf
... 9.7. [1, p. 157 ] Compute the mutual information between X and Y for the binary symmetric channel with f = 0. 15 when the input distribution is P X = {p 0 = 0 .5, p 1 = 0 .5} . Exercise 9.8. [2, p. 157 ] Compute ... |x )P (x ) (9. 25) = 0. 15 × 0.1 0. 15 × 0.1 + 0. 85 × 0.9 (9.26) = 0.0 15 0.78 = 0.019. (9.27) Solution to exercise 9.4 (p.149). If we observe y = 0, P (x = 1 |y =...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 4 potx
... A(w) 0 1 5 12 8 30 9 20 10 72 11 120 12 100 13 180 14 240 15 272 16 3 45 17 300 18 200 19 120 20 36 Total 2048 0 50 100 150 200 250 300 350 0 5 8 10 15 20 25 30 1 10 100 0 5 8 10 15 20 25 30 Figure ... = K/N 2 (3, 1) 1/3 repetition code R 3 3 (7, 4) 4/7 (7, 4) Hamming code 4 ( 15, 11) 11/ 15 5 (31, 26) 26/31 6 (63, 57 ) 57 /63 Exercise 13.4. [2, p.223] What is the prob...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 6 pptx
... http://www.cambridge.org/ 052 1642981 You can buy this book for 30 pounds or $50 . See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links. 358 29 — Monte Carlo Methods (a) 0 0 .5 1 1 .5 2 2 .5 3 -4 -2 0 ... = 1 101 4 101 1 50 4 101 1 50 2 101 1 50 = 0.00000000000 25 = 2 .5 ×10 −12 . (28.3) Thus comparing P(D |H c ) with P (D |H a ) = 0.00010, even if our prior...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 8 docx
... {1, 0, 3, 0, 0, 5, 0, 5, 0, 6, 107, 0, 0, 0, 1, 0, 0, 64, 0, 35} . [A small amount of computation is required to solve this problem.] 35. 3 Inferring causation Exercise 35. 5. [2, p. 450 ] In the Bayesian ... αm i ) Γ( i F i + α) Γ(α) i Γ(αm i ) , ( 35. 13) most factors cancel and all that remains is P (H A→B |Data) P (H B→A |Data) = (7 65 + 1)(2 35 + 1) ( 950 + 1) (50 + 1) = 3.8 1...
Ngày tải lên: 13/08/2014, 18:20
Information Theory, Inference, and Learning Algorithms phần 9 pdf
... on this idea by Williams and Rasmussen (1996), Neal (1997b), Barber and Williams (1997) and Gibbs and MacKay (2000), and will assess whether, for supervised regression and classification tasks, ... follows: C N+1 ≡ C N k k T κ . ( 45. 35) The posterior distribution ( 45. 34) is given by P (t N+1 |t N ) ∝ exp − 1 2 t N t N+1 C −1 N+1...
Ngày tải lên: 13/08/2014, 18:20