Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
... − n−1 k=0 lim z→ e ıπ(1+2k)/n log z + (z − e ıπ(1+2k)/n )/z nz n−1 = − n−1 k=0 ıπ(1 + 2k)/n n e ıπ(1+2k)(n−1)/n = − ıπ n 2 e ıπ(n−1)/n n−1 k=0 (1 + 2k) e 2 k/n = 2 e ıπ/n n 2 n−1 k=1 k e 2 k/n = 2 e ıπ/n n 2 n e 2 /n −1 = π n ... z −1 )/ (2 ) dz = C 2/ a z 2 + ( 2/ a)z − 1 dz We factor the denominator of the integrand. f(a) = C 2/ a (z − z 1 )(z − z 2 )...
Ngày tải lên: 06/08/2014, 01:21
... denominator. s 2 + s − 1 (s − 2) (s − ı)(s + ı) We expand the function in partial fractions and then invert each term. s 2 + s − 1 (s − 2) (s − ı)(s + ı) = 1 s − 2 − ı /2 s − ı + ı /2 s + ı s 2 + s − 1 (s − 2) (s ... transform for t > 0. 1 485 • t e 2t is of exponential order α for any α > 2. • e t 2 is not of exponential order α for any α. • t n is of exponent...
Ngày tải lên: 06/08/2014, 01:21
... cut. 29 2 -2 0 2 x -2 -1 0 1 2 y 2 4 -2 0 2 x -2 0 2 x -2 -1 0 1 2 y 0 2 4 -2 0 2 x Figure 7 .20 : Plots of |cos(z)| and |sin(z)|. Result 7.6.1 e z = e x (cos y + ı sin y) cos z = e ız + e −ız 2 sin ... form. Denote any multi-valuedness explicitly. 2 2/5 , 3 1+ı , √ 3 − ı 1/4 , 1 ı/4 . Hint, Solution 28 7 -2 -1 0 1 2 x -2 -1 0 1 2 y 0 0.5 1 -2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 1 pps
... ations are u x = v y and u y = −v x −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 = −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 and 2( x − 1)y ((x − 1) 2 + y 2 ) 2 = 2( x − 1)y ((x − 1) 2 + y 2 ) 2 The Cauchy-Riemann ... point. Example 8. 4.3 1/ sin (z 2 ) has a second order pole at z = 0 and first order poles at z = (nπ) 1 /2 , n ∈ Z ± . lim z→0 z 2 sin (z 2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx
... = 1 2 Log x 2 + y 2 + ı Arctan(x, y). 4 52 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = ... x direction. f (z) = u x + ıv x f (z) = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) f (z) = 2 e x 2 −y 2 ((x + ı...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 3 ppt
... = 2 0 e ınθ ı e ıθ dθ = e ı(n+1)θ n+1 2 0 for n = −1 [ıθ] 2 0 for n = −1 = 0 for n = −1 2 for n = −1 2. We parameterize the contour and do the integration. z − z 0 = 2 + e ıθ , θ ∈ [0 . . . 2 ) C (z − z 0 ) n dz = 2 0 2 ... axis and is defined continuously on the real axis.) Hint, Solution 481 C Log z dz ≤ C |Log z||dz| = ...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... formula. C z z 2 + 1 dz = C 1 /2 z −ı dz + C 1 /2 z + ı dz = 1 2 2 + 1 2 2 = 2 3. C z 2 + 1 z dz = C z + 1 z dz = C z dz + C 1 z dz = 0 + 2 = 2 Solution 11.3 Let C be the ... integrals along C 1 and C 2 . (We could also see this by deforming C onto C 1 and C 2 .) C = C 1 + C 2 We use the Cauchy Integral Formula to evaluate the integrals along C...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... closed form. (See Exercise 12. 9.) N−1 n=1 sin(nx) = 0 for x = 2 k cos(x /2) −cos((N−1 /2) x) 2 sin(x /2) for x = 2 k The partial sums have infinite discontinuities at x = 2 k, k ∈ Z. The partial ... n)) 5. ∞ n=1 ln (2 n ) ln (3 n ) + 1 6. ∞ n=0 1 ln(n + 20 ) 7. ∞ n=0 4 n + 1 3 n − 2 8. ∞ n=0 (Log π 2) n 9. ∞ n =2 n 2 − 1 n 4 − 1 10. ∞ n =2 n 2 (ln n) n...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc
... π) Hint 12. 23 CONTINUE Hint 12. 24 CONTINUE Hint 12. 25 Hint 12. 26 Hint 12. 27 Hint 12. 28 Hint 12. 29 Hint 12. 30 CONTINUE 581 Solution 12. 22 cos z = −cos(z − π) = − ∞ n=0 (−1) n (z −π) 2n (2n)! = ∞ n=0 (−1) n+1 (z ... polynomial. 2 6 12 20 4 6 8 2 2 We s ee that the polynomial is second order. p(n) = an 2 + bn + c. We solve for the coefficients. a + b + c = 2 4a + 2b +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... 0. |z|=3 z 1 z − ı /2 − 1 z − 2 + c (z − 2) 2 + d dz = 0 |z|=3 (z − ı /2) + ı /2 z − ı /2 − (z − 2) + 2 z − 2 + c(z − 2) + 2c (z − 2) 2 dz = 0 2 ı 2 − 2 + c = 0 c = 2 − ı 2 Thus we see that ... − 2/ z = − 1 z ∞ n=0 2 z n , for |2/ z| < 1 = − ∞ n=0 2 n z −n−1 , for |z| > 2 = − −1 n=−∞ 2 −n−1 z n , for |z| > 2 620 1...
Ngày tải lên: 06/08/2014, 01:21