Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... n) n 11. ∞ n =2 (−1) n ln 1 n 12. ∞ n =2 (n!) 2 (2n)! 13. ∞ n =2 3 n + 4 n + 5 5 n − 4 n − 3 5 62 Im(z) Re(z) R R 2 1 Im(z) Re(z) R R 2 1 C r 1 r 2 z C C C 1 2 z Figure 12. 5: Contours for a Laurent ... closed form. (See Exercise 12. 9.) N−1 n=1 sin(nx) = 0 for x = 2 k cos(x /2) −cos((N−1 /2) x) 2 sin(x /2) for x = 2 k The partial sums have infinit...
Ngày tải lên: 06/08/2014, 01:21
... 1) 2 + y 2 ) 2 = −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 and 2( x − 1)y ((x − 1) 2 + y 2 ) 2 = 2( x − 1)y ((x − 1) 2 + y 2 ) 2 The Cauchy-Riemann equations are each identities. The first partial derivatives ... (z 2 ) has a second order pole at z = 0 and first order poles at z = (nπ) 1 /2 , n ∈ Z ± . lim z→0 z 2 sin (z 2 ) = lim z→0 2z 2z cos (z 2 ) = li...
Ngày tải lên: 06/08/2014, 01:21
... equation p(z) = z 6 −5z 2 +10 = 0 lie in the annulus 1 < |z| < 2. Exercise 11 .5 Evaluate as a function of t ω = 1 2 C e zt z 2 (z 2 + a 2 ) dz, 50 5 Integral Test. Result 12. 1 .2 If the coefficients ... 1) dz. There are singularities at z = 0 and z = −1. Let C 1 and C 2 be contours around z = 0 and z = −1. See Figure 11.6. We deform C onto C 1 and C 2 . C...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf
... dish. 1 62 Let u = x 2 and dv = e 2x dx. Then du = 2x dx and v = 1 2 e 2x . x 3 e 2x dx = 1 2 x 3 e 2x − 3 2 1 2 x 2 e 2x − x e 2x dx x 3 e 2x dx = 1 2 x 3 e 2x − 3 4 x 2 e 2x + 3 2 x e 2x dx Let ... = x and dv = e 2x dx. Then du = dx and v = 1 2 e 2x . x 3 e 2x dx = 1 2 x 3 e 2x − 3 4 x 2 e 2x + 3 2 1 2 x e 2x − 1 2 e 2x dx x 3 e 2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 6 pps
... 4 x 2 + y 2 + (x − 2) 2 + y 2 = 4 x 2 + y 2 = 16 − 8 (x − 2) 2 + y 2 + x 2 − 4x + 4 + y 2 x − 5 = 2 (x − 2) 2 + y 2 x 2 − 10x + 25 = 4x 2 − 16x + 16 + 4y 2 1 4 (x − 1) 2 + 1 3 y 2 = 1 Thus ... (1 2 ) 1 /2 = 1 1 /2 = ±1 and 1 1 /2 2 = (±1) 2 = 1. Example 6.6 .2 Consider 2 1 /5 , (1 + ı) 1/3 and (2 + ı) 5/ 6 . 2 1 /5 =...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx
... = 1 2 Log x 2 + y 2 + ı Arctan(x, y). 4 52 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = ... x direction. f (z) = u x + ıv x f (z) = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) f (z) = 2 e x 2 −y 2 ((x +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 3 ppt
... = 2 0 e ınθ ı e ıθ dθ = e ı(n+1)θ n+1 2 0 for n = −1 [ıθ] 2 0 for n = −1 = 0 for n = −1 2 for n = −1 2. We parameterize the contour and do the integration. z − z 0 = 2 + e ıθ , θ ∈ [0 . . . 2 ) C (z − z 0 ) n dz = 2 0 2 ... axis and is defined continuously on the real axis.) Hint, Solution 481 C Log z dz ≤ C |Log z||dz| = π...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc
... π) Hint 12. 23 CONTINUE Hint 12. 24 CONTINUE Hint 12. 25 Hint 12. 26 Hint 12. 27 Hint 12. 28 Hint 12. 29 Hint 12. 30 CONTINUE 58 1 Solution 12. 22 cos z = −cos(z − π) = − ∞ n=0 (−1) n (z −π) 2n (2n)! = ∞ n=0 (−1) n+1 (z ... 5| 2 lim k→∞ (k + 2) 2 (k + 1) 2 < 1 |z + 5| 2 lim k→∞ 2( k + 2) 2( k + 1) < 1 |z + 5| 2 lim k→∞ 2 2 < 1 |z + 5| 2 < 1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... 0. |z|=3 z 1 z − ı /2 − 1 z − 2 + c (z − 2) 2 + d dz = 0 |z|=3 (z − ı /2) + ı /2 z − ı /2 − (z − 2) + 2 z − 2 + c(z − 2) + 2c (z − 2) 2 dz = 0 2 ı 2 − 2 + c = 0 c = 2 − ı 2 Thus we see that ... − 2/ z = − 1 z ∞ n=0 2 z n , for |2/ z| < 1 = − ∞ n=0 2 n z −n−1 , for |z| > 2 = − −1 n=−∞ 2 −n−1 z n , for |z| > 2 620 1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
... the residue by expanding the function in a Laurent series. (1 − cos z) 2 z 7 = z −7 1 − 1 − z 2 2 + z 4 24 + O z 6 2 = z −7 z 2 2 − z 4 24 + O z 6 2 = z −7 z 4 4 − z 6 24 + O z 8 = 1 4z 3 − 1 24 z + ... − n−1 k=0 lim z→ e ıπ(1+2k)/n log z + (z − e ıπ(1+2k)/n )/z nz n−1 = − n−1 k=0 ıπ(1 + 2k)/n n e ıπ(1+2k)(n−1)/n = − ıπ n 2 e ıπ(n−1)/n...
Ngày tải lên: 06/08/2014, 01:21