Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... z z 3 z=−ı + 2 2! d 2 dz 2 (z 3 + z + ı) sin z z + ı z=0 = 2 (−ı sinh(1)) + ıπ 2 3z 2 + 1 z + ı − z 3 + z + ı (z + ı) 2 cos z + 6z z + ı − 2( 3z 2 + 1) (z + ı) 2 + 2( z 3 + z + ı) (z ... formula. C z z 2 + 1 dz = C 1 /2 z −ı dz + C 1 /2 z + ı dz = 1 2 2 + 1 2 2 = 2 3. C z 2 + 1 z dz = C z + 1 z dz = C z dz + C 1 z dz = 0 + 2 = 2...
Ngày tải lên: 06/08/2014, 01:21
... cos x = 0 2 = 0 lim x→0 csc x − 1 x = 0 109 Solution 3.15 a. f (x) = ( 12 −2x) 2 + 2x( 12 − 2x)( 2) = 4( x −6) 2 + 8x(x − 6) = 12( x 2) (x − 6) There are critical points at x = 2 and x = 6. f (x) ... 6. f (x) = 12( x 2) + 12( x − 6) = 24 (x 4) Since f (2) = 48 < 0, x = 2 is a local maximum. Since f (6) = 48 > 0, x = 6 is a local minimum. b. f (x...
Ngày tải lên: 06/08/2014, 01:21
... ations are u x = v y and u y = −v x −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 = −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 and 2( x − 1)y ((x − 1) 2 + y 2 ) 2 = 2( x − 1)y ((x − 1) 2 + y 2 ) 2 The Cauchy-Riemann ... 8 .4. 3 1/ sin (z 2 ) has a second order pole at z = 0 and first order poles at z = (nπ) 1 /2 , n ∈ Z ± . lim z→0 z 2 sin (z 2 ) = lim z→0 2z...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx
... = 1 2 Log x 2 + y 2 + ı Arctan(x, y). 4 52 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = ... x direction. f (z) = u x + ıv x f (z) = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) + 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) f (z) = 2 e x 2 −y 2 ((x +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 3 ppt
... axis and is defined continuously on the real axis.) Hint, Solution 48 1 C Log z dz ≤ C |Log z||dz| = π /2 −π /2 |ln 2 + ıθ |2 dθ ≤ 2 π /2 −π /2 (ln 2 + |θ|) dθ = 4 π /2 0 (ln 2 ... = 2 0 e ınθ ı e ıθ dθ = e ı(n+1)θ n+1 2 0 for n = −1 [ıθ] 2 0 for n = −1 = 0 for n = −1 2 for n = −1 2. We parameterize the contour and...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... n) n 11. ∞ n =2 (−1) n ln 1 n 12. ∞ n =2 (n!) 2 (2n)! 13. ∞ n =2 3 n + 4 n + 5 5 n − 4 n − 3 5 62 Im(z) Re(z) R R 2 1 Im(z) Re(z) R R 2 1 C r 1 r 2 z C C C 1 2 z Figure 12. 5: Contours for a Laurent ... closed form. (See Exercise 12. 9.) N−1 n=1 sin(nx) = 0 for x = 2 k cos(x /2) −cos((N−1 /2) x) 2 sin(x /2) for x = 2 k The partial sums have infinite...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc
... π) Hint 12. 23 CONTINUE Hint 12. 24 CONTINUE Hint 12. 25 Hint 12. 26 Hint 12. 27 Hint 12. 28 Hint 12. 29 Hint 12. 30 CONTINUE 581 Solution 12. 22 cos z = −cos(z − π) = − ∞ n=0 (−1) n (z −π) 2n (2n)! = ∞ n=0 (−1) n+1 (z ... polynomial. 2 6 12 20 4 6 8 2 2 We s ee that the polynomial is second order. p(n) = an 2 + bn + c. We solve for the coefficients. a + b + c = 2 4a + 2b + c...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... 0. |z|=3 z 1 z − ı /2 − 1 z − 2 + c (z − 2) 2 + d dz = 0 |z|=3 (z − ı /2) + ı /2 z − ı /2 − (z − 2) + 2 z − 2 + c(z − 2) + 2c (z − 2) 2 dz = 0 2 ı 2 − 2 + c = 0 c = 2 − ı 2 Thus we see that ... − 2/ z = − 1 z ∞ n=0 2 z n , for |2/ z| < 1 = − ∞ n=0 2 n z −n−1 , for |z| > 2 = − −1 n=−∞ 2 −n−1 z n , for |z| > 2 620 1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
... the residue by expanding the function in a Laurent series. (1 − cos z) 2 z 7 = z −7 1 − 1 − z 2 2 + z 4 24 + O z 6 2 = z −7 z 2 2 − z 4 24 + O z 6 2 = z −7 z 4 4 − z 6 24 + O z 8 = 1 4z 3 − 1 24 z + ... − n−1 k=0 lim z→ e ıπ(1+2k)/n log z + (z − e ıπ(1+2k)/n )/z nz n−1 = − n−1 k=0 ıπ(1 + 2k)/n n e ıπ(1+2k)(n−1)/n = − ıπ n 2 e...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 9 ppt
... are, Res 1 z 4 + 1 , e ıπ /4 = lim z→ e ıπ /4 z − e ıπ /4 z 4 + 1 = lim z→ e ıπ /4 1 4z 3 = 1 4 e −ı3π /4 = −1 − ı 4 √ 2 , Res 1 z 4 + 1 , e ı3π /4 = 1 4( e ı3π /4 ) 3 = 1 4 e −ıπ /4 = 1 − ı 4 √ 2 , We evaluate ... Res z 2 (z 2 + 1) 2 , z = ı Res z 2 (z 2 + 1) 2 , z = ı = lim z→ı d dz (z − ı) 2 z 2 (z 2 + 1) 2 = lim z→ı d dz...
Ngày tải lên: 06/08/2014, 01:21