4.CHỨNG MINH TỨ GIÁC NỘI TIẾP A.KIẾN THỨC CƠ BẢN

Một phần của tài liệu CÁC DẠNG TOÁN lớp 9 (Trang 35)

A. Các bớc giải bài toán bằng cách lập hệ phơng trình:

4.CHỨNG MINH TỨ GIÁC NỘI TIẾP A.KIẾN THỨC CƠ BẢN

A.KIẾN THỨC CƠ BẢN 1.Tam giỏc đồng dạng -Khỏi niệm: A A '; B B'; C C' ABC A 'B'C' khi AB AC BC A'B' A 'C' B'C' ∠ = ∠ ∠ = ∠ ∠ = ∠   ∆ ∆  = =  :

-Cỏc trường hợp đồng dạng của hai tam giỏc: c – c – c; c – g – c; g – g.

-Cỏc trường hợp đồng dạng của hai tam giỏc vuụng: gúc nhọn; hai cạnh gúc vuụng; cạnh huyền - cạnh gúc vuụng…

*Tớnh chất: Hai tam giỏc đồng dạng thỡ tỉ số hai đường cao, hai đường phõn giỏc, hai đường trung tuyến tương ứng, hai chu vi bằng tỉ số đồng dạng; tỉ số hai diện tớch bằng bỡnh phương tỉ số đồng dạng.

2.Phương phỏp chứng minh hệ thức hỡnh học

-Dựng định lớ Talet, tớnh chất đường phõn giỏc, tam giỏc đồng dạng, cỏc hệ thức lượng trong tam giỏc vuụng, …

Giả sử cần chứng minh MA.MB = MC.MD

-Chứng minh hai tam giỏc MAC và MDB đồng dạng hoặc hai tam giỏc MAD và MCB.

-Trong trường hợp 5 điểm đú cựng nằm trờn một đường thẳng thỡ cần chứng minh cỏc tớch trờn cựng bằng tớch thứ ba.

Nếu cần chứng minh MT2 = MA.MB thỡ chứng minh hai tam giỏc MTA và MBT

đồng dạng hoặc so sỏnh với tớch thứ ba.

Ngoài ra cần chỳ ý đến việc sử dụng cỏc hệ thức trong tam giỏc vuụng; phương tớch của một điểm với đường trũn.

4.CHỨNG MINH TỨ GIÁC NỘI TIẾPA.KIẾN THỨC CƠ BẢN A.KIẾN THỨC CƠ BẢN

Phương phỏp chứng minh

-Chứng minh bốn đỉnh của tứ giỏc cựng cỏch đều một điểm. -Chứng minh tứ giỏc cú hai gúc đối diện bự nhau.

-Chứng minh hai đỉnh cựng nhỡn đoạn thẳng tạo bởi hai điểm cũn lại hai gúc bằng nhau.

đú M AB CD; N AD= ∩ = ∩BC)

-Nếu PA.PC = PB.PD thỡ tứ giỏc ABCD nội tiếp. (Trong đú P AC= ∩BD) -Chứng minh tứ giỏc đú là hỡnh thang cõn; hỡnh chữ nhật; hỡnh vuụng; …

Nếu cần chứng minh cho nhiều điểm cựng thuộc một đường trũn ta cú thể chứng minh lần lượt 4 điểm một lỳc. Song cần chỳ ý tớnh chất “Qua 3 điểm khụng thẳng hàng xỏc định duy nhất một đường trũn”

Một phần của tài liệu CÁC DẠNG TOÁN lớp 9 (Trang 35)

Tải bản đầy đủ (DOC)

(50 trang)
w