AE.AB = AF AC.

Một phần của tài liệu CÁC DẠNG TOÁN lớp 9 (Trang 45)

4. Chứng minh EF là tiếp tuyến chung của hai nửa đờng tròn .

Lời giải:

1. Ta có : ∠BEH = 900 ( nội tiếp chắn nửc đờng tròn ) => ∠AEH = 900 (vì là hai góc kề bù). (1)

∠CFH = 900 ( nội tiếp chắn nửc đờng tròn )

=> ∠AFH = 900 (vì là hai góc kề bù).(2)

∠EAF = 900 ( Vì tam giác ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông).

2. Tứ giác AFHE là hình chữ nhật nên nội tiếp đợc một đờng tròn =>∠F1=∠H1 (nộitiếp chắn cung AE) . Theo giả thiết AH ⊥BC nên AH là tiếp tuyến chung của hai nửa đ- tiếp chắn cung AE) . Theo giả thiết AH ⊥BC nên AH là tiếp tuyến chung của hai nửa đ- ờng tròn (O1) và (O2)

=> ∠B1 = ∠H1 (hai góc nội tiếp cùng chắn cung HE) => ∠B1= ∠F1 => ∠EBC+∠EFC = ∠AFE + ∠EFC mà ∠AFE + ∠EFC = 1800 (vì là hai góc kề bù) => ∠EBC+∠EFC = 1800 mặt khác ∠EBC và ∠EFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

3. Xét hai tam giác AEF và ACB ta có ∠A = 900 là góc chung; ∠AFE = ∠ABC ( theo Chứng minh trên)

=> ∆AEF ∼∆ACB => AE AF

AC=AB => AE. AB = AF. AC.

* HD cách 2: Tam giác AHB vuông tại H có HE AB => AH2 = AE.AB (*) Tam giác AHC vuông tại H có HF AC => AH2 = AF.AC (**) Từ (*) và (**) => AE. AB = AF. AC

4. Tứ giác AFHE là hình chữ nhật => IE = EH => ∆IEH cân tại I => ∠E1 = ∠H1 .∆O1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ∠E2 = ∠H2. ∆O1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ∠E2 = ∠H2.

=> ∠E1 + ∠E2 = ∠H1 + ∠H2 mà ∠H1 + ∠H2 = ∠AHB = 900 => ∠E1 + ∠E2 = ∠O1EF = 900

=> O1E ⊥EF .

Chứng minh tơng tự ta cũng có O2F ⊥ EF. Vậy EF là tiếp tuyến chung của hai nửa đ- ờng tròn .

của AB các nửa đờng tròn có đờng kính theo thứ tự là AB, AC, CB và có tâm theo thứ tự là O, I, K.

Đờng vuông góc với AB tại C cắt nửa đờng tròn (O) tại E. Gọi M. N theo thứ tự là giao điểm của EA,

EB với các nửa đờng tròn (I), (K). 1.Chứng minh EC = MN.

2.Ch/minh MN là tiếp tuyến chung của các nửa đ/tròn (I), (K).

3.Tính MN.

4.Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn

Lời giải:

Một phần của tài liệu CÁC DẠNG TOÁN lớp 9 (Trang 45)

Tải bản đầy đủ (DOC)

(50 trang)
w