LM35 là một họ IC cảm biến nhiệt độ sản xuất theo công nghệ bán dẫn dựa trên các chất bán dẫn dễ bị tác động bởi sự thay đổi của nhiệt độ , đầu ra của cảm biến là điện áp(V) tỉ lệ với nhiệt độ mà nó được đặt trong môi trường cần đo.
Họ LM35 có rất nhiều loại và nhiều kiểu đóng vỏ khác nhau.
Hình 3. 4 Cảm biến nhiệt độ LM35
Đặc điểm nổi bật
Đo nhiệt độ với thang đo nhiệt bách phân (0 C) Độ phân giải : 10mV/10C
Khả năng đo nhiệt độ trong khoảng: - 55 đến +150 (0 C) Nguồn áp hoạt động : 4V đến 30V
Điện áp đầu ra : +6V đến -1V
Vận tốc ánh sáng được xác định v = c/n
trong đó c vận tốc trong chân không c = 299792km/s n chiết suất của môi trường truyền sóng Sự liên hệ giữa tần số f và bước sóng λ :
f V
=
λ Trong chân không :
f c
=
λ
Dãy phổ ánh sáng được biểu diễn như hình :
Tính chất hạt của ánh sáng thể hiện qua sự tương tác của nó với vật chất . Ánh sáng bao gồm các hạt photon với năng lượng Wφ phụ thuộc vào tần số .
Wφ = hf
Trong đó h là hằng số Planck h = 6,6256.10-34Js
Trong vật chất các hạt điện tử luôn có xu hướng trở thành điện tử tự do . Để giải phóng được các hạt điện tử khỏi nguyên tử thì cần 1 năng lượng tối thiểu bằng
năng lượng liên kết WL . Do đó nếu photon cần hấp thụ 1 hạt điện tử thì cần 1 điều kiện là Wφ ≥ WL . Khi đó ta có ;
h W f ≥ L
Bước sóng ngưỡng ( bước sóng lớn nhất ) của ánh sáng là bước sóng có thể gây nên hiện tượng giải phóng điện tử được tính từ biểu thức :
hc
=
chuyển năng lượng của chúng thành năng lượng của dao động nhiệt. Đối với vật liệu có hệ số phản xạ R lớn và bị chiếu bởi ánh sáng đơn sắc có công suất φ thì :
Số photon chiếu đến trong 1 giây :
hc hv
ninc = φ = λφ
Số photon hấp thụ trong 1 giây :
hc R n
R
na =(1− ) inc =(1− )λφ Số hạt điện tử và lổ trống được giải phóng trong 1 giây :
hc R n
G =η. a =η(1− ) λφ
Trong đó η là hiệu suất lượng tử ( số điện tử hoặc lổ trống trung bình được giải phóng khi 1 photon được hấp thụ )
b. Đơn vị đo quang
Năng lượng bức xạ ( Q ) là năng lượng phát xạ , lan truyền hoặc hấp thụ dưới dạng bức xạ , được đo bằng Jun ( J ) .
hông lượng ánh sáng ( φ ) là công suất phát xạ , lan truyền hoặc hấp thụ , đo bằng đơn vị oat ( W ).
dt dQ
=
Cường độ ánh sáng ( I ) là luồng năng lượng phát ra theo 1 hướng cho trước dưới 1 đơn vị góc khối , có đơn vị đo là oat/steradian.
Ω =
d d I φ
Độ chói năng lượng : là tỉ số giữa cường độ ánh sáng phát ra bởi 1 phần tử bề mặt dA theo 1 hướng xác định và diện tích hình chiếu của phần tử này trên mặt phẳng P vuông góc với hướng đó dAn =dAcosθ ( θ là góc giữa P và mặt phẳng chứa dA ) . Độ chói đo bằng oat/steradian.m2 .
n dA
dI L =
Độ rọi năng lượng ( E ) là tỉ số giữa luồng năng lượng thu được bởi 1 phần tử bề mặt va diện tích phần tử đó . Độ rọi năng lượng được đo bằng oat/m2 .
dA d E = φ
Tên định nghĩa Đ/v thị giác Đ/v năng lượng Luồng ( thông lượng )
Cường độ Độ chói Độ rọi Năng lượng Lumen ( lm ) Candela ( cd ) Candela/m2 ( cd/m2 ) Lumen/m2 hay lux ( lx ) Lumen.s ( lm.s ) Oat ( W ) Oat/sr ( W/Sr ) Oat/sr.m2 ( W/sr.m2 ) W/m2 Jun ( J )
Được cấu tạo gồm 1 dây wonfram có vỏ bọc bằng thủy tinh hoặc thanh anh có chứa chất khí hiếm hoặc halogen ( I2 ) . Đèn wonfram co đặc điểm :
Thông lượng lớn , dãy phổ rộng, có thể giảm bằng các tấm lọc.
Do có quán tính nhiệt lớn nên không thể thay đổi bức xạ 1 cách nhanh chóng ,tuổi thọ thấp , dễ vở .
- Diode phát quang :
Thời gian hồi đáp nhỏ , khoảng vài ns do vậy có khả năng thay đổi theo tần số cao .Phổ ánh sáng hoàn toàn xác định , độ tin cậy cao , bền theo thời gian Thông lượng tương đối nhỏ ( ~ 10mW ) và nhạy với nhiệt độ là nhược điểm của đèn . -Lazer :
Tia Lazer là nguồn sáng đơn sắc , độ chói lớn , rất định hướng và đặc biệt có tính liên kết mạnh ( rất khó xãy ra tán sắc ánh sáng )
Lazer lá ánh sáng có bước song đơn sắc hòan toàn xác định , thông lượng lớn , có khả năng nhận được chùm tia mảnh với độ định hướng cao và truyền đi với khoảng cách rất lớn .
3.2.2 Điện Trở Quang ( photo register )
Các cảm biến điện trở là sự phụ thuộc của điện trở vào thông lượng bức xạ và phổ của bức xạ đó . Quang trở là 1 trong những cảm biến có độ nhạy cao . Nguyên tắc chế tạo quang trở là dựa trên hiện tượng quang dẫn do kết quả của hiệu ứng quang điện nội ( hiện tượng giải phóng hạt tải điện trong vật liệu dưới tác dụng của ánh sáng làm tăng độ dẩn điện của vật liệu ).
a. Cấu tạo :
Cảm biến quang thường được cấu tạo bằng các chất bán dẫn đa tinh thể đồng nhất hoặc đơn tinh thể, bán dẫn riêng hoặc bán dẫn pha tạp chất .
Đa tinh thể : CdS, CdSe, CdTe , PbS, PbSe, PbTe.
Đơn tinh thể : Ge, Si tinh khiết hoặc pha tạp Au, Cu, Sb, In, SbIn, AsIn, PIn, CdHgTe.
Tùy theo chất cấu tạo mà quang trở có vùng phổ làm việc khác nhau
b. Điện trở :
Một quang trở có giá trị điện trở tương đương với 2 điện trở ghép song song gồm điện trở tối Rco và điện trở Rcp được xác định bởi hiệu ứng quang điện do ánh sáng tác động .
Giá trị điện trở tối phụ thuộc vào vật liệu cấu tạo , dạng hình học , kích thước và nhiệt độ. Các chất PbS , CdS, CdSe có giá trị điện trở tối khá lớn : từ 104 đến 109
ở nhiệt độ 250C.
Các chất SbIn, SbAs, CdHgTe có giá trị điện trở tối khá nhỏ : từ 10Ω đến 103 Ω ở nhiệt độ 25 0C
Điện trở Rcp được xác định theo biểu thức :
γ
φ−
= a Rcp
Sự phụ thuộc của điện trở vào thông lượng ánh sáng không tuyến tính . Tuy nhiên có thể tuyến tính hoá nó bằng cách ghép song song với 1 điện trở
Sự phụ thuộc của điện trở vào độ rọi sáng
Điện trở RC phụ thuộc vào nhiệt độ , độ nhạy nhiệt của quang trở càng nhỏ khi độ rọi càng lớn . Giá trị điện trở sẽ bị giảm chậm ở những điều kiện làm việc giới hạn khi độ rọi và điện áp đặt vào quá lớn .
Dựa vào sơ đồ tương đương của quang trở , độ dẫn điện của quang trở là tỏng độ dẩn sáng và độ dẫn tối . cp co c G G G = + Trong đó Gco là độ dẫn tối co co R G = 1 Gcp là độ quang dẫn a R G cp cp γ φ = = 1
Khi làm việc quang trở được phân cực 1 điện áp V sẽ có 1 dòng điện đi qua nó được xác định P O CP CO cV G V G V I I G I = = + = +
Trong đó Io dòng tối , Ip dòng quang điện
Tuy nhiên trong điều kiện sử dụng Io << Ip nên dòng quang điện có thể được xác định theo biểu thức
a V
Ip .φγ
=
Đối với luồng bức xạ có phổ xác định , tỹ lệ chuyển đổi tĩnh :
1 − = φγ φ a V I
Việc xác định giá trị điện trở của quang trở hoặc xác định sự thay đổi cần phải có mạch đo phù hợp , nghĩa là phải được cấp dòng không đổi và ghép theo sơ đồ đo điện thế hoặc sơ đồ cầu Wheatstone, mạch khuếch đại thuật toán. Trong thực tế thường được ứng dụng 2 trường hợp là điều khiển reley và thu tín hiệu quang .
Sơ đồ ứng dụng quang trở
3.2.3 Diode Cảm Quang ( photo diode ) a. Nguyên tắc :
Khi cho 2 chất bán dẫn P và N tiếp xúc với nhau sẽ tạo nên vùng nghèo hạt dẫn tại tiếp xúc , tại đó xuất hiện 1 điện trường gọi là ETX và hình thành 1 hàng rào điện thế VTX .
Khi không có điện thế ngoài thì dòng qua tiếp giáp có giá trị I=0 . Thực tế dòng I lúc đó chính là dòng tổng của 2 dòng ngược chiều nhau và có cùng độ lớn :
Dòng khuếch tán của các hạt dẫn cơ bản khi tiếp xúc 2 chất bán dẫn.
Dòng hạt dẫn không cơ bản nhờ tác dụng của điện trường trong vùng nghèo .
Khi đặt 1 điện áp lên vùng nghèo , chiều cao của hàng rào điện thế sẽ thay đổi kéo theo sự thay đổi của dòng hạt dẫn cơ bản và bề rộng vùng nghèo . Điện áp đặt lên vùng nghèo sẽ xác định giá trị dòng điện I
O O I kT qV I I − = exp
Khi điện áp ngược đủ lớn , chiều cao của hàng rào điện thế lớn đến mức dòng khuếch tán của các hạt dẫn ( dòng cơ bản ) có thể bỏ qua và chỉ còn lại dòng không cơ bản , nghĩa là I = IO , đây chính là dòng ngược của diode .
Khi chiếu sáng diode bằng bức xạ có bước sóng nhỏ hơn bước song ngưỡng ( λ < λS ) sẽ hình thành thêm các cặp điện tử và lỗ trống . Để các hạt dẫn này tham gia làm tăng độ dẫn , từ đó làm tăng dòng I. Điều quan trọng là ánh sáng phải được chiếu đến vùng nghèo , sau khi đi qua 1 bề dày đáng kể của chất bán dẫn và tiêu hao năng lượng ( càng đi vào sâu thì thông lượng φ càng giảm )
Trong thực tế các vật liệu thường được dùng để chế tạo photodiode là Si, Ge, ( dùng để thu ánh sánh nhìn thấy được và hồng ngoại gần ) GaAs, InAs, InSb, HgCdTe ( dung để thu hồng ngoại )
α hệ số hấp thụ
h hằng số Planck h = 6,6256.10-34Js
c. Chế độ sử dụng photodiode :
Có 2 chế độ sử dụng : chế độ quang dẫn và chế độ quang thế .
- Chế độ quang dẫn
Chế độ quang dẫn được đặc trưng bởi độ tuyến tính cao , thời gian hồi đáp ngắn và dãi thông lớn . Có 2 dạng sơ đồ
• Dạng sơ đồ cơ sở : Trong sơ đồ ta có : I R R R Vo m + = 1 2 1
Nếu tăng giá trị Rm sẽ làm giảm nhiễu . Tổng trở ngã vào phải lớn để giảm ảnh hưởng của nội trở diode
Dạng sơ đồ tác động nhanh
Khi đó ta có : Vo =(R1 +R2)I
Điện trở tải của diode nhỏ và gần bằng
K R R1+ 2
, trong đó K là hệ số khuếch đại ở tần số làm việc.
Tụ C2 có nhiệm vụ bù trừ ảnh hưởng của tụ kí sinh C1 với điều kiện R1C1 =R2C2. Bộ khuếch đại sử dụng dòng vào rất nhỏ và suy giảm do nhiệt không đáng kể .
3.2.4 Transistor Quang ( photo transistor ) a. Cấu tạo và nguyên tắc :
Transistor quang được cấu tạo bằng cbd loại Si , được chế tạo theo loại transistor NPN sao cho có vùng cực B có khả năng cảm nhận ánh sáng từ bên ngoài .
Khi transistor quang làm việc thì được phân cực cho cực C và E nên điện áp phân cực tập trung toàn bộ vào vùng chuyển tiếp B-C ( phân cực ngịch ). Khi chuyển tiếp B-C được chiếu sáng ( cực B nhận ánh sáng ) thì transistor quang hoạt động giống với diode quang ở chế độ quang dẫn với dòng ngược .
Khi đó ta có : Ir = Io +Ip
với Io là dòng ngược tối
Ip là dòng quang điện do tác dụng của thông lượng φ chiếu qua bề dày X . Ta có
( ) ( ) hc X R q Ip = η 1− exp −α
η hiệu suất lượng tử
R hệ sồ phản xạ α hệ số hấp thụ
h hằng số Planck h = 6,6256.10-34Js c vận tốc truyền trong chân không
Ánh sáng nhận được nhỏ hơn hay lớn hơn ánh sáng ngưỡng ban đầu
Transistor làm việc ở chế độ D : dẫn bão hoà hoặc ngưng dẫn . Hoạt động như 1 reley ,hoặc cổng logic .
Tốc độ chuyển mạch của transistor quang bị giới hạn đáng kể bởi nội trở của nó . Tốc độ náy có thể cải thiện bằng cách ghép thêm vào mạch 1 bộ khuếch đại hoặc ghép thêm transistor dưới dạng darlingtone ( với điều kiện mạh phải có trở kháng vào nhỏ )