0
Tải bản đầy đủ (.doc) (94 trang)

GIAO TIẾP VỚI BỘ HIỂN THỊ TƯƠNG TỰ-SỐ(ADC)

Một phần của tài liệu ĐỒ ÁN KỸ THUẬT ĐIỆN ĐIỆN TỬ NGHIÊN CỨU VỀ CẢM BIẾN,ỨNG DỤNG THIẾT KẾ MÔ HÌNH NHÀ THÔNG MINH (Trang 50 -50 )

2.3.1 Giới thiệu về ADC

Bộ chuyển đổi ADC là bộ chuyển đổi tín hiệu ở dạng tương tự sang dạng số để có thể làm việc được với CPU.

Ứng dụng này chủ yếu mô tả cách thức tối ưu hóa ADC (Analog to Digital Convertor) trong các phần cứng để không làm thay đổi bản chất của nó và làm cho nó hoạt động tốt nhất. Phương pháp này phụ thuộc vào các nhiễu bên trong của ADC và các nhiễu bên ngoài như : trở kháng , nguồn , các vòng dây và anten...

2.3.2 Tìm hiểu về ADC 0804

Chip ADC0804 là bộ chuyển đổi tương tự số thuộc họ ADC800 của hãng National Semiconductor. Chip này cũng được nhiều hãng khác sản xuất. Chip có điện áp nuôi +5V và độ phân giải 8 bit. Ngoài độ phân giải thì thời gian chuyển

Các chân khác của ADC0804 có chức năng như sau:

CS (Chip select)

Chân số 1, là chân chọn Chip, đầu vào tích cực mức thấp được sử dụng để kích hoạt chip ADC0804. Để truy cập ADC0804 thì chân này phải ở mức thấp.

RD (Read)

Chân số 2, là một tín hiệu vào, tích cực ở mức thấp. Các bộ chuyển đổi đầu vào tương tự thành số nhị phân và giữ nó ở một thanh ghi trong. RD được sử dụng để có dữ liệu đã được chuyển đổi tới đầu ra của ADC0804. Khi CS = 0 nếu có một xung cao xuống thấp áp đến chân RD thì dữ liệu ra dạng số 8 bit được đưa tới các chân dữ liệu (DB0 – DB7).

WR (Write)

Chân số 3, đây là chân vào tích cực mức thấp được dùng để báo cho ADC biết bắt đầu quá trình chuyển đổi. Nếu CS = 0 khi WR tạo ra từ xung cao xuống xung thấp thì bộ ADC0804 bắt đầu quá trình chuyển đổi giá trị đầu vào tương tự

Vin về số nhị phân 8 bit. Khi việc chuyển đổi hoàn tất thì chân INTR được ADC hạ xuống thấp.

CLK IN và CLK R

CLK IN (chân số 4), là chân vào nối tới đồng hồ ngoài được sử dụng để tạo thời gian. Tuy nhiên ADC0804 cũng có một bộ tạo xung đồng hồ riêng. Để dùng đồng hồ riêng thì các chân CLK IN và CLK R (chân số 19) được nối với một tụ điện và một điện trở (như hình vẽ).

Ngắt INTR (Interupt)

Chân số 5, là chân ra tích cực mức thấp. Bình thường chân này ở trạng thái cao và khi việc chuyển đổi hoàn tất thì nó xuống thấp để báo cho CPU biết l à dữ liệu chuyển đổi sẵn sàng để lấy đi. Sau khi INTR xuống thấp, cần đặt CS = 0 v à

Vref/2

Chân số 9, là chân điện áp đầu vào được dùng làm điện áp tham chiếu. Nếu chân này hở thì điện áp đầu vào tương tự cho ADC0804 nằm trong dải 0 - +5V. Tuy nhiên, có nhiều ứng dụng mà đầu vào tương tự áp đến Vin khác với dải 0 - +5V. Chân Vref/2 được dùng để thực hiện các điện áp đầu ra khác 0 - +5V.

D0 - D7

D0 - D7, chân số 18 – 11, là các chân ra dữ liệu số (D7 là bit cao nhất MSB và D0 là bit thấp nhất LSB). Các chân này được đệm ba trạng thái và dữ liệu đã được chuyển đổi chỉ được truy cập khi chân CS = 0 và chân RD đưa xuống mức thấp

CHƯƠNG 3

CẢM BIẾN SỬ DỤNG TRONG MÔ HÌNH

3.1 CẢM BIẾN ĐO NHIỆT ĐỘ.

Nhiệt độ từ môi trường sẽ được cảm biến hấp thu, tại đây tùy theo cơ cấu của cảm biến sẽ biến đại lượng nhiệt này thành một đại lượng điện nào đó. Như thế một yếu tố hết sức quan trọng đó là “ nhiệt độ môi trường cần đo” và “nhiệt độ cảm nhận của cảm biến”. Cụ thể điều này là: Các loại cảm biến mà các bạn trông thấy nó đều là cái vỏ bảo vệ, phần tử cảm biến nằm bên trong cái vỏ này ( bán dẫn, lưỡng kim….) do đó việc đo có chính xác hay không tùy thuộc vào việc truyền nhiệt từ môi trường vào đến phần tử cảm biến tổn thất bao nhiêu ( 1 trong những yếu tố quyết định giá cảm biến nhiệt ).

Một nguyên tắc đặt ra là: Tăng cường trao đổi nhiệt giữa cảm biến và môi trường cần đo.

3.1.1 Phân loại cảm biến nhiệt

- Cặp nhiệt điện ( Thermocouple ).

- Ưu điểm: Bền, đo nhiệt độ cao.

- Khuyết điểm: Nhiều yếu tố ảnh hưởng làm sai số. Độ nhạy không cao. - Thường dùng: Lò nhiệt, môi trường khắt nghiệt, đo nhiệt nhớt máy nén,… - Tầm đo: -100 D.C <1400 D.C

Hình 3. 1 Cặp nhiệt điện

- Gồm 2 dây kim loại khác nhau được hàn dính 1 đầu gọi là đầu nóng ( hay đầu đo), hai đầu còn lại gọi là đầu lạnh ( hay là đầu chuẩn ). Khi có sự chênh lệch nhiệt độ giữa đầu nóng và đầu lạnh thì sẽ phát sinh 1 sức điện động V tại đầu lạnh. Một vấn đề đặt ra là phải ổn định và đo được nhiệt độ ở đầu lạnh, điều này tùy thuộc rất lớn vào chất liệu. Do vậy mới cho ra các chủng loại cặp nhiệt độ, mỗi loại cho ra 1 sức điện động khác nhau: E, J, K, R, S, T. Các bạn lưu ý điều này để chọn đầu dò và bộ điều khiển cho thích hợp.

- Dây của cặp nhiệt điện thì không dài để nối đến bộ điều khiển, yếu tố dẫn đến không chính xác là chổ này, để giải quyết điều này chúng ta phải bù trừ cho nó ( offset trên bộ điều khiển ).

Lưu ý khi sử dụng:

- Từ những yếu tố trên khi sử dụng loại cảm biến này chúng ta lưu ý là không nên nối thêm dây ( vì tín hiệu cho ra là mV nối sẽ suy hao rất nhiều ).

Cọng dây của cảm biến nên để thông thoáng ( đừng cho cọng dây này dính vào môi trường đo ). Cuối cùng là nên kiểm tra cẩn thận việc Offset thiết bị.

- Lưu ý: Vì tín hiệu cho ra là điện áp ( có cực âm và dương ) do vậy cần chú ý kí hiệu để lắp đặt vào bộ khuếch đại cho đúng

3.1.3 Thermistor

- Cấu tạo: Làm từ hổn hợp các oxid kim loại: mangan, nickel, cobalt,… - Nguyên lý: Thay đổi điện trở khi nhiệt độ thay đổi.

- Ưu điểm: Bền, rẽ tiền, dễ chế tạo. - Khuyết điểm: Dãy tuyến tính hẹp.

- Thường dùng: Làm các chức năng bảo vệ, ép vào cuộn dây động cơ, mạch điện tử.

- Tầm đo: 50 <150 D.C.

Cấu tạo Thermistor.

- Thermistor được cấu tạo từ hổn hợp các bột ocid. Các bột này được hòa trộn theo tỉ lệ và khối lượng nhất định sau đó được nén chặt và nung ở nhiệt độ cao. Và mức độ dẫn điện của hổn hợp này sẽ thay đổi khi nhiệt độ thay đổi.

- Có hai loại thermistor: Hệ số nhiệt dương PTC- điện trở tăng theo nhiệt độ; Hệ số nhiệt âm NTC – điện trở giảm theo nhiệt độ. Thường dùng nhất là loại NTC.

- Thermistor chỉ tuyển tính trong khoảng nhiệt độ nhất định 50-150D.C do vậy người ta ít dùng để dùng làm cảm biến đo nhiệt. Chỉ sử dụng trong các mục đích bảo vệ, ngắt nhiệt, các bác nhà ta thường gọi là Tẹt-mít. Cái Block lạnh nào cũng có một vài bộ gắn chặt vào cuộn dây động cơ.

Lưu ý khi sử dụng:

- Tùy vào nhiệt độ môi trường nào mà chọn Thermistor cho thích hợp, lưu ý hai loại PTC và NTC ( gọi nôm na là thường đóng/ thường hở ) Có thể test dễ dàng với đồng hồ VOM.

- Ưu điểm: Rẽ tiền, dễ chế tạo, độ nhạy cao, chống nhiễu tốt, mạch xử lý đơn giản.

- Khuyết điểm: Không chịu nhiệt độ cao, kém bền.

- Thường dùng: Đo nhiệt độ không khí, dùng trong các thiết bị đo, bảo vệ các mạch điện tử.

- Tầm đo: -50 <150 D.C.

Hình 3. 3 Bán dẫn

- Cảm biến nhiệt Bán Dẫn là những loại cảm biến được chế tạo từ những chất bán dẫn. Có các loại như Diode, Transistor, IC. Nguyên lý của chúng là dựa trên mức độ phân cực của các lớp P-N tuyến tính với nhiệt độ môi trường. Ngày nay với sự phát triển của ngành công nghệ bán dẫn đã cho ra đời rất nhiều loại cảm biến nhiệt với sự tích hợp của nhiều ưu điểm: Độ chính xác cao, chống nhiễu tốt, hoạt động ổn định, mạch điện xử lý đơn giản, rẽ tiền,….

tự Pt100), các loại IC như: LM35, LM335, LM45. Nguyên lý của chúng là nhiệt độ thay đổi sẽ cho ra điện áp thay đổi. Điện áp này được phân áp từ một điện áp chuẩn có trong mạch.

Gần đây có cho ra đời IC cảm biến nhiệt cao cấp, chúng hổ trợ luôn cả chuẩn truyền thông I2C ( DS18B20 ) mở ra một xu hướng mới trong “ thế giới cảm biến”.

IC cảm biến nhiệt DS18B20

Lưu ý khi sử dụng:

- Vì được chế tạo từ các thành phần bán dẫn nên cảm biến nhiệt Bán Dẫn kém bền, không chịu nhiệt độ cao. Nếu vượt ngưỡng bảo vệ có thể làm hỏng cảm biến.

- Cảm biến bán dẫn mỗi loại chỉ tuyến tính trong một giới hạn nào đó, ngoài dải này cảm biến sẽ mất tác dụng. Hết sức quan tâm đến tầm đo của loại cảm biến này để đạt được sự chính xác.

- Loại cảm biến này kém chịu đựng trong môi trường khắc nghiệt: Ẩm cao, hóa chất có tính ăn mòn, rung sốc va chạm mạnh.

3.1.5 Nhiệt kế bức xạ ( còn gọi là hỏa kế- pyrometer ).

- Cấu tạo: Làm từ mạch điện tử, quang học.

- Nguyên lý: Đo tính chất bức xạ năng lượng của môi trường mang nhiệt. - Ưu điểm: Dùng trong môi trường khắc nghiệt, không cần tiếp xúc với môi

xạ năng lượng. Và năng lượng bức xạ sẽ có một bước sóng nhất định. Hỏa kế sẽ thu nhận bước sóng này và phân tích để cho ra nhiệt độ của vật cần đo.

Lưu ý khi sử dụng:

- Tùy theo thông số của nhà sản xuất mà hỏa kế có các tầm đo khác nhau, tuy nhiên đa số hỏa kế đo ở khoảng nhiệt độ cao. Và vì đặc điểm không tiếp xúc trực tiếp với vật cần đo nên mức độ chính xác của hỏa kế không cao, chịu nhiều ảnh hưởng của môi trường xung quanh ( góc độ đo, rung tay, ánh sáng môi trường ).

3.1.6 Cảm biến nhiệt độ LM35

LM35 là một họ IC cảm biến nhiệt độ sản xuất theo công nghệ bán dẫn dựa trên các chất bán dẫn dễ bị tác động bởi sự thay đổi của nhiệt độ , đầu ra của cảm biến là điện áp(V) tỉ lệ với nhiệt độ mà nó được đặt trong môi trường cần đo.

Họ LM35 có rất nhiều loại và nhiều kiểu đóng vỏ khác nhau.

Hình 3. 4 Cảm biến nhiệt độ LM35

Đặc điểm nổi bật

Đo nhiệt độ với thang đo nhiệt bách phân (0 C) Độ phân giải : 10mV/10C

Khả năng đo nhiệt độ trong khoảng: - 55 đến +150 (0 C) Nguồn áp hoạt động : 4V đến 30V

Điện áp đầu ra : +6V đến -1V

Vận tốc ánh sáng được xác định v = c/n

trong đó c vận tốc trong chân không c = 299792km/s n chiết suất của môi trường truyền sóng Sự liên hệ giữa tần số f và bước sóng λ :

f

V

=

λ

Trong chân không :

f

c

=

λ

Dãy phổ ánh sáng được biểu diễn như hình :

Tính chất hạt của ánh sáng thể hiện qua sự tương tác của nó với vật chất . Ánh sáng bao gồm các hạt photon với năng lượng Wφ phụ thuộc vào tần số .

Wφ = hf

Trong đó h là hằng số Planck h = 6,6256.10-34Js

Trong vật chất các hạt điện tử luôn có xu hướng trở thành điện tử tự do . Để giải phóng được các hạt điện tử khỏi nguyên tử thì cần 1 năng lượng tối thiểu bằng

năng lượng liên kết WL . Do đó nếu photon cần hấp thụ 1 hạt điện tử thì cần 1 điều kiện là Wφ ≥ WL . Khi đó ta có ;

h

W

f

L

Bước sóng ngưỡng ( bước sóng lớn nhất ) của ánh sáng là bước sóng có thể gây nên hiện tượng giải phóng điện tử được tính từ biểu thức :

hc

=

chuyển năng lượng của chúng thành năng lượng của dao động nhiệt. Đối với vật liệu có hệ số phản xạ R lớn và bị chiếu bởi ánh sáng đơn sắc có công suất φ thì :

Số photon chiếu đến trong 1 giây :

hc

hv

n

inc

= φ = λφ

Số photon hấp thụ trong 1 giây :

hc

R

n

R

n

a

=(1 )

inc

=(1 )λφ

Số hạt điện tử và lổ trống được giải phóng trong 1 giây :

hc

R

n

G =η.

a

=η(1 ) λφ

Trong đó η là hiệu suất lượng tử ( số điện tử hoặc lổ trống trung bình được giải phóng khi 1 photon được hấp thụ )

b. Đơn vị đo quang

Năng lượng bức xạ ( Q ) là năng lượng phát xạ , lan truyền hoặc hấp thụ dưới dạng bức xạ , được đo bằng Jun ( J ) .

hông lượng ánh sáng ( φ ) là công suất phát xạ , lan truyền hoặc hấp thụ , đo bằng đơn vị oat ( W ).

dt

dQ

=

Cường độ ánh sáng ( I ) là luồng năng lượng phát ra theo 1 hướng cho trước dưới 1 đơn vị góc khối , có đơn vị đo là oat/steradian.

=

d

d

I φ

Độ chói năng lượng : là tỉ số giữa cường độ ánh sáng phát ra bởi 1 phần tử bề mặt dA theo 1 hướng xác định và diện tích hình chiếu của phần tử này trên mặt phẳng P vuông góc với hướng đó

dA

n

=dAcosθ

( θ là góc giữa P và mặt phẳng chứa dA ) . Độ chói đo bằng oat/steradian.m2 .

n

dA

dI

L =

Độ rọi năng lượng ( E ) là tỉ số giữa luồng năng lượng thu được bởi 1 phần tử bề mặt va diện tích phần tử đó . Độ rọi năng lượng được đo bằng oat/m2 .

dA

d

E = φ

Tên định nghĩa Đ/v thị giác Đ/v năng lượng Luồng ( thông lượng )

Cường độ Độ chói Độ rọi Năng lượng Lumen ( lm ) Candela ( cd ) Candela/m2 ( cd/m2 ) Lumen/m2 hay lux ( lx ) Lumen.s ( lm.s ) Oat ( W ) Oat/sr ( W/Sr ) Oat/sr.m2 ( W/sr.m2 ) W/m2 Jun ( J )

Được cấu tạo gồm 1 dây wonfram có vỏ bọc bằng thủy tinh hoặc thanh anh có chứa chất khí hiếm hoặc halogen ( I2 ) . Đèn wonfram co đặc điểm :

Thông lượng lớn , dãy phổ rộng, có thể giảm bằng các tấm lọc.

Do có quán tính nhiệt lớn nên không thể thay đổi bức xạ 1 cách nhanh chóng ,tuổi thọ thấp , dễ vở .

- Diode phát quang :

Thời gian hồi đáp nhỏ , khoảng vài ns do vậy có khả năng thay đổi theo tần số cao .Phổ ánh sáng hoàn toàn xác định , độ tin cậy cao , bền theo thời gian Thông lượng tương đối nhỏ ( ~ 10mW ) và nhạy với nhiệt độ là nhược điểm của đèn . -Lazer :

Tia Lazer là nguồn sáng đơn sắc , độ chói lớn , rất định hướng và đặc biệt có tính liên kết mạnh ( rất khó xãy ra tán sắc ánh sáng )

Lazer lá ánh sáng có bước song đơn sắc hòan toàn xác định , thông lượng lớn , có khả năng nhận được chùm tia mảnh với độ định hướng cao và truyền đi với khoảng cách rất lớn .

3.2.2 Điện Trở Quang ( photo register )

Các cảm biến điện trở là sự phụ thuộc của điện trở vào thông lượng bức xạ và phổ của bức xạ đó . Quang trở là 1 trong những cảm biến có độ nhạy cao . Nguyên tắc chế tạo quang trở là dựa trên hiện tượng quang dẫn do kết quả của hiệu ứng quang điện nội ( hiện tượng giải phóng hạt tải điện trong vật liệu dưới tác dụng của ánh sáng làm tăng độ dẩn điện của vật liệu ).

a. Cấu tạo :

Cảm biến quang thường được cấu tạo bằng các chất bán dẫn đa tinh thể đồng nhất hoặc đơn tinh thể, bán dẫn riêng hoặc bán dẫn pha tạp chất .

Đa tinh thể : CdS, CdSe, CdTe , PbS, PbSe, PbTe.

Đơn tinh thể : Ge, Si tinh khiết hoặc pha tạp Au, Cu, Sb, In, SbIn, AsIn, PIn, CdHgTe.

Tùy theo chất cấu tạo mà quang trở có vùng phổ làm việc khác nhau

b. Điện trở :

Một quang trở có giá trị điện trở tương đương với 2 điện trở ghép song song gồm điện trở tối Rco và điện trở Rcp được xác định bởi hiệu ứng quang điện do ánh sáng tác động .

Giá trị điện trở tối phụ thuộc vào vật liệu cấu tạo , dạng hình học , kích thước và

Một phần của tài liệu ĐỒ ÁN KỸ THUẬT ĐIỆN ĐIỆN TỬ NGHIÊN CỨU VỀ CẢM BIẾN,ỨNG DỤNG THIẾT KẾ MÔ HÌNH NHÀ THÔNG MINH (Trang 50 -50 )

×