5 PHẦ : GIỚI THIỆU MẠNG KOHONEN-SOM (SELF-ORGANIZING MAP) 1 GIỚI THIỆU VỀ MẠNG NEURON KOHONEN
5.1.2 Mạng nơron Kohonen
Mạng luyện không không có thầy hướng dẫn, là một kiểu luyện mà ở đó các nơron tự xoay xở với các dữ liệu mẫu mà nó có được chứ không có “Ông thầy” gợi ý cần luyện theo hướng nàọ
Tự mình khám phá những quan hệ đang được quan tâm, ví dụ về các dạng ( patterns), các đặc trưng (features ) từ dữ liệu vào (input data) sau đó chuyển thành cái ra (outputs). Như vậy thực chất : đó là các mạng tự tổ chức SOM (hay mạng nơron Kohonen) .
Định nghĩa: Mạng noron Kohonen là mạng có khả năng sử dụng những kinh nghiệm của quá khứ để thích ứng với những biến đổi của môi trường (không dự báo trước). Loại mạng này thuộc nhóm hệ học, thích nghi không cần có tín hiệu chỉ đạo từ bên ngoàị
Trong phần này chúng ta sẽ trình bày một số quy trình luyện tham số của luyện không có thày như sau:
Cái ra của chúng là , i=1,...,n.
Có m tín hiệu vào {x1, x2,..., xm},wij là trọng số liên kết từ xj với PEi .
Gọi s(x), s(y) là hàm chuyển tín hiệu, giả thiết đó là hàm đơn điệu không giảm liên tục như dạng hàm Sigmoid.
Phương thức biến đổi trọng số được gọi là luật luyện Hebb, quy tắc luyện đơn giản theo dạng Hebb cho bởi phương trình :
(2.40)
Bây giờ ta xét một số trường hợp riêng:
- Quy tắc luyện cạnh tranh (Competitive Learning Rule – Grossberg 1969, Rumelhart 1986)
(2.41)
ở đây (2.42)
- Nếu dùng ta thu được :
Quy tắc luyện cạnh tranh tuyến tính (the Linear competitive learning rule)
(2.43)
Trường hợp riêng quan trọng là quy tắc “ thắng lấy tất cả - the winner-take-all learning rule “ của
Kohonen , giải thích để hiểu qua bài toán phân cụm tập mẫu thành n cụm , với n đã chọ
Kí hiệu , α là hệ số học.
Tại mỗi vòng lặp k, quy tắc luyện gồm 2 bước :
1/ Bước tìm cái khớp nhất (matching) – tìm nơron tạm gọi là nơron thắng (theo nghĩa gần mẫu nhất), sử dụng công thức sau:
, (2.44) (Phương pháp tính tích vô hướng).
2/ Tính toán sai số và điều chỉnh trọng số
Ký hiệu ej là sai số ở cột thứ j, wij là biểu diễn cho cột thứ j của ma trận trọng số w, sai số này được tính theo công thức sau:
ej = ||x-wij|| (2.45)
Nếu tổng sai số chưa nằm dưới mức cho phép, ta điều chỉnh trọng số theo công thức:
với k =1,…,m (2.46)
Khi một mẫu được đưa tới một mạng Kohonen, những nơron được chọn là nơron thắng (winner) (nơron thích hợp nhất theo nghĩa mà ta đặt ra). Nơron thắng này là dữ liệu đầu ra từ mạng Kohonen. Thông thường, các nơron thắng này tương ứng với các nhóm trong dữ liệu đưa vào mạng Kohonen.
Mạng Kohonen được huấn luyện trong một chế độ không có giám sát. Sử dụng mạng Kohonen này, dữ liệu có thể được phân loại thành từng cụm. Chúng ta sẽ xem xét mạng Kohonen qua quá trình huấn luyện.