Lập bản đồ gene từ các phép lai phân tích ba điểm

Một phần của tài liệu Di truyền học Nhiễm sắc thể (Trang 32 - 37)

1. Trao đổi chéo kép với việc xác định trật tự và khoảng cách các gene

Giả sử ta có ba gene liên kết A, B và C cần lập bản đồ. Theo lý thuyết, có thể có ba cách sắp xếp khác nhau tùy vào vị trí gene ở giữa, đó là: (i) A-B-C; (ii) A-C-B; và (iii) B-A-C. Tuy nhiên, trong trường hợp chưa biết chắc về sự liên kết của ba gene, và giả sử ta đã xác định được tần số tái tổ hợp giữa hai gene A và B là 15% và giữa hai gene B và C là 20%. Theo suy luận, ta biết rằng ba gene này cùng nhóm liên kết; và theo nguyên tắc, chúng có thể liên kết với nhau theo một trong hai cách: (i) A-B-C; hoặc (ii) B-A-C. Trong trường hợp này, ta cần phải tiến hành một phép lai phân tích giữa A và C để xem liệu tần số tái tổ hợp là 35% hay 5%. Như vậy, để xác định được vị trí tương đối của ba gene ta phải tiến hành ba phép lai phân tích riêng biệt. Trong khi đó, nếu dựa vào khả năng xảy ra một trao đổi chéo kép hay là hai trao đổi chéo đơn đồng thời (trong trường hợp ba gene ở khoảng cách đủ lớn), ta chỉ cần thực hiện một phép lai phân tích ba

điểm (three-point testcross) là đủ. Điều đó có nghĩa là, việc lập bản đồ ba gene trở nên gọn nhẹ, không còn cồng kềnh phức tạp như trước nữa.

(a) (b)

Hình 4.21 (a) Một trao đổi chéo kép, và (b) các sản phẩm tạo thành.

Thật vậy, theo lý thuyết xác suất của các sự kiện ngẫu nhiên, một khi trao đổi chéo kép xảy ra (ở một số tế bào này), thì các trao đổi chéo đơn riêng rẽ (dĩ nhiên là xảy ra ở các nhóm tế bào khác) tất yếu phải xảy ra và có các tần số cao hơn hẳn tần số trao đổi chéo kép. Trong trường hợp đó, đời con của phép lai phân tích thu được (nếu đầy đủ) sẽ có tám kiểu hình thuộc bốn nhóm khác nhau: Trước hết là các kiểu cha mẹ với tần số cao nhất; kế đến là các kiểu trao đổi chéo đơn khác nhau; và cuối cùng là các kiểu trao đổi chéo kép với tần số thấp nhất. Và theo nguyên tắc, cứ hai kiểu hình của mỗi nhóm sẽ có số lượng tương đương nhau. Trên hình 4.21 cho thấy một trao đổi chéo kép xảy ra ởđoạn chứa gene b (nằm giữa a và

c), và kết quả là cho ra bốn sản phẩm gồm hai kiểu cha mẹ (abc và + + +) và hai kiểu tái tổ hợp đối với gene b (a + c và + b +). Với kết quả này ta dễ dàng xác định gene ở giữa vì nó là sản phẩm của trao đổi chéo kép.

Bây giờ ta hãy tìm hiểu hai ví dụ kinh điển về lai phân tích ba điểm, một thí nghiệm ở ruồi giấm và một thí nghiệm chọn giống ở ngô.

Ví d 1: Trong thí nghiệm sử dụng lại ba gene liên kết-X ở ruồi giấm (y, w và m), sau khi thu được các con cái F1 dị hợp tử về ba cặp gen, Morgan cho chúng lai trở lại với con đực dòng kiểm tra (hình 4.22). Kết quả phân tích cho thấy các con cái F1 cho tám loại giao tử (tức tám kiểu hình ởđời con của nó), hai trong số đó là các kiểu giao tử bố mẹ và sáu kiểu còn lại là các giao tử tái tổ hợp.

Theo sự trình bày ở trên, ta có thể tiến hành phân loại và tính tần số của mỗi kiểu giao tử dựa vào số lượng các kiểu hình thống kê được (hình 4.22) rồi vẽ bản đồ cho ba gene này, theo các bước chung nhất như sau: P ♀ + + + / + + + × ♂ y w m / Y

+ + + / y w m × y w m / Y

(♀ F1) (♂ dòng kiểm tra)

Giao tử Số lượng Tần số Kiểu bố mẹ (không tái tổ hợp) + + + 3.501

y w m 3.471 0,664 Kiểu tái tổ hợp đơn m với w + + m 1.754

y w + 1.700 0,329 Kiểu tái tổ hợp đơn y với w y + + 28

+ w m 32 0,0057 Kiểu tái tổ hợp kép w với y và m + w + 6

y + m 3 0,00086

Tổng 10.495 1,0

Hình 4.22 Một phép lai phân tích các ruồi giấm cái dị hợp tử về ba gene liên kết -X (có cho sẵn số lượng và tần số của các kiểu khác nhau ởđời con).

Bước 1: Xác định thành phần gene trội lặn trong nhóm liên kết (dựa vào các kiểu giao tử bố mẹ, tức hai kiểu hình có số lượng nhiều nhất). Ở đây là y w m và + + + (đã biết trước).

lượng ít nhất để suy ra đây là sản phẩm của trao đổi chéo kép (Lưu ý: trên thực tế, có thể chỉ xuất hiện một kiểu hình có thể là do số lượng chưa đủ lớn hoặc do các gene nằm khá gần nhau nên gây nhiễu, như sẽ thảo luận ở phần sau). Qua so sánh thành phần gene của các kiểu tái tổ hợp kép với các kiểu bố mẹ cho phép tìm ra gene thay đổi vị trí chính là gene ở giữa. Trong ví dụ này, gene ở giữa là w. Vậy trật tự ba gene là y-w-m, và kiểu gene của con cái F1 là: + + + / y w m. Khi biết được gene ở giữa, ta dễ dàng xác định được các kiểu trao đổi chéo đơn bằng cách sắp xếp lại trật tự gene ở các kiểu giao tử rồi so sánh với các kiểu bố mẹđể tìm ra gene có sự thay đổi vị trí. Ví dụ, với hai kiểu giao tử + + m và y w +, vì m đổi chỗ nên đây là kết quả của trao đổi chéo đơn giữa w và m. Vậy hai kiểu còn lại là do trao đổi chéo đơn giữa y và w.

Bước 3: Tính khoảng cách giữa các gene. Để tìm khoảng cách giữa các gene có thể tiến hành theo một trong hai cách sau:

(i) Tính trực tiếp dựa vào số lượng của các kiểu tái tổ hợp. Theo nguyên tắc, khoảng cách của hai gene nằm kề nhau thì bằng số lượng cá thể của các kiểu tái tổ hợp giữa hai gene đó cộng với số lượng cá thể của các kiểu tái tổ hợp kép rồi chia cho tổng số cá thể ởđời con. Và khoảng cách giữa hai gene đầu mút thì bằng tổng các khoảng cách của các gene nằm trong nó. Cụ thể, khoảng cách y và w = (28 + 32 + 6 = 3) / 10.495 = 0,0066. Tương tự, ta tính được khoảng cách hai gene w và m = (1.754 + 1.700 + 6 = 3) / 10.495 = 0,330. Khi đó khoảng cách bản đồ giữa y và m = 0,0066 + 0,330 = 0,3366.

(ii) Tính gián tiếp thông qua các tần số kiểu hình thuộc các nhóm khác nhau (xem ở hình 4.22). Khi có được các tần số này rồi, ta tính khoảng cách giữa hai gene kề nhau bằng cách cộng tần số trao đổi chéo đơn thực tế của hai gene đó với tần số trao đổi chéo kép thực tế. Ví dụ, khoảng cách hai gene y và w = 0,0057 + 0,00086 = 0,0066; và khoảng cách hai gene w và m = 0,329 + 0,00086 = 0,330. Khi đó khoảng cách y và m là 0,3366 (Cũng có thể tính khoảng cách y và m bằng cách cộng hai tần số trao đổi chéo đơn thực tế; nghĩa là bằng 0,0057 + 0,329 = 0,335. Con số này có hơi khác một chút so với con số tính được ở trên. Tuy nhiên, trên thực tế, việc tính khoảng cách hai gene đầu mút là không cần thiết).

Bước 4: Vẽ bản đồ gene. Bạn hãy tự vẽ bản đồ cho ba gene này.

Ví d 2: Tóm tắt kết quả thí nghiệm lai phân tích ba gene trên trên một nhiễm sắc thể ở ngô (Zea mays). Các allele lặn được sử dụng trong phép lai một cá thể F1 dị hợp tử ba cặp gene (Lz Gl Su / lz gl su) này là: lz (tập tính mọc bò lan), gl (lá bóng), và su (nội nhũ đường). Phép lai và kết quảđược cho ở bảng 4.8.

(F1 đem lai) (dòng kiểm tra)

Bảng 4.8 Kết quảởđời con của phép lai phân tích ba điểm ở ngô Kiểu hình đời con

của phép lai phân tích Kiểu gene giao tử từ F1 Số lượng

bình thường (kiểu dại) Lz Gl Su 286

mọc bò lan lz Gl Su 33

lá bóng Lz gl Su 59

nội nhũ đường Lz Gl su 4

mọc bò lan, lá bóng lz gl Su 2

mọc bò lan, nội nhũ đường lz Gl su 44

lá bóng, nội nhũ đường Lz gl su 40

mọc bò lan, lá bóng, nội nhũ đường lz gl su 272

Tổng 740 Bằng phương pháp trên đây, ta xác định được:

(i) Thành phần nhóm gene liên kết phải là: Lz Gl Su (đã biết trước) (ii) Gene ở giữa là Su, và trật tự ba gene: Lz-Su-Gl

(iii) Khoảng cách giữa Lz và Su = (40 + 33 + 4 + 2)/ 740 = 0,107 hay 10,7%; giữa Su và Gl = (59 + 44 + 4 + 2)/ 740 = 0,148 hay 14,8%.

(iv) Bản đồ gene và sơđồ trao đổi chéo kép được minh họa như sau:

2. Độ nhiễu (interference) và hệ số trùng hợp (coefficient of coincidence)

Về thực chất, tái tổ hợp hay trao đổi chéo là sự kiện mang tính xác suất cho nên điều quan trọng cần biết là xem liệu các trao đổi chéo đơn này là độc lập với nhau hay có ảnh hưởng nào đó lên nhau hay không. Nếu các sự kiện tái trao đổi chéo khác nhau là độc lập, thì xác suất của hai sự kiện đồng thời như thế xảy ra trong cùng giao tử sẽ bằng tích xác suất của các sự kiện riêng rẽ. Khi đó, tần số trao đổi chéo kép kỳ vọng từ ví dụ 1 sẽ bằng 0,330 × 0,0066 = 0,00218. Trong khi đó, tần số trao đổi chéo kép

quan sát được là 0,00086; rõ ràng là thấp hơn tỷ lệđược kỳ vọng. Đúng ra, theo lý thuyết, số cá thể trao đổi chéo kép xuất hiện phải bằng 0,00218 × 10495 ≈ 23 (con số thực tế xuất hiện ít hơn 23 −9 = 14 cá thể).

Sự chênh lệch như thế nói chung rất phổ biến ở các sinh vật, và nó được coi là hiện tượng nhiễu (interference); nghĩa là sự xuất hiện một trao đổi chéo ở một vùng nhiễm sắc thể làm giảm xác suất xảy ra trao đổi chéo ở vùng thứ hai lân cận nó.

Để mô tả sự khác nhau giữa các số lượng trao đôi chéo quan sát và kỳ vọng đó, lần đầu tiên H.J. Muller đưa ra một phương pháp chuẩn cho sự tính toán này. Theo đó, hệ số trùng hợp (coefficient of coincidence) được đo bằng số lượng hay tần số các thể tái tổ hợp kép quan sát (O: observed) chia cho số lượng hay tần số kỳ vọng tương ứng (E: expected); và nếu ta ký hiệu hệ số trùng hợp là C, thì C = O/E; trong đó: 0 ≤ C ≤ 1. Trị số này là một tiêu chuẩn cho phép đo mức độ nhiễu I (interference) của một trao đổi chéo này lên một trao đổi chéo khác. Công thức dùng để tính độ nhiễu này như sau:

I = 1 − C

trong đó 0 ≤ I ≤ 1. Từ ví dụ 1 ở trên, ta tính được C = 0,00086/0,00218 = 0,3945; điều này có nghĩa là số lương trao đổi chéo kép thực tế đã xảy ra chỉ bằng 39,45% con số lý thuyết. Vậy I = 1 − 0,3945 = 0,6055. Trị số này cho thấy mức độ nhiễu cao đáng kể.

Rõ ràng hai đại lượng này là nghịch nhau và tổng của chúng bằng đơn vị (I + C = 1). Nếu I = 1, lúc đó C = 0; điều đó có nghĩa là, hiện tượng nhiễu tăng dần lên khi mà khoảng cách hai gene phía bên ngoài càng ngắn lại, cho tới khi trao đổi chéo kép không thể xảy ra tại một điểm giới hạn (nhiễu hoàn toàn) và hệ số phù hợp bằng zero. Ở nhiều sinh vật khoảng cách này là khoảng 10 đơn vị bản đồ. Ngược lại, nếu I = 0, thì C = 1; nghĩa là khi các gene nằm rất xa nhau đến nỗi các trao đổi chéo của chúng không ảnh hưởng gì lên nhau (hoàn toàn không nhiễu), thì hiện tượng nhiễu biến mất và hệ số phù hợp bằng 1. Các thực nghiệm cho thấy I = 0 khi tổng khoảng cách giữa các gene lớn hơn chừng 45 đơn vị bản đồ.

Một lý thuyết để giải thích tần số trao đổi chéo kép thấp hiếm là ở chỗ trị số nhiễu cao đối với các gene liên kết chặt rõ ràng là có liên quan với hiện tượng "xơ cứng", không thể vặn xoắn về mặt vật lý của các chromatid trong một vùng rất ngắn. Tuy nhiên, hiện tượng nhiễu có thể xảy ra ở các gene cách xa nhau tới 30 đơn vị bản đồ; điều này chỉ ra rằng các nhân tố khác cũng có tầm quan trọng không kém. Thật là thú vị, các tâm động của các nhiễm sắc thể tâm giữa ở ruồi giấm (và có lẽ cảở nhiều sinh vật khác)

hoạt động như là các vật cản đối với hiện tượng nhiễu. Nói cách khác, sự trao đổi chéo ở một vai của nhiễm sắc thể tâm giữa không gây hiệu quảức chế lên sự trao đổi chéo ở vai kia.

Một phần của tài liệu Di truyền học Nhiễm sắc thể (Trang 32 - 37)

Tải bản đầy đủ (PDF)

(44 trang)