4. Chương 4: THỬ NGHIỆM CHƯƠNG TRÌNH CHỮ KÝ SỐ BỘI TRÊN ĐƯỜNG
4.4.2 Chương trình lược đồ chữ ký số bội tuần tự
Bước 1: Trên môi trường Matlab chạy chương trình MultisigGui
Bước 2- Khởi tạo tham số:
Nhập số lượng thành viên vào ô Number of Member. Nhập nội dung văn bản cần mã hóa vào ô Message hoặc mở từ một file đã lưu trữ bằng nút Browse như trong phần khởi tạo tham số của chương trình minh họa cho lược đồ chữ ký bội ngang hàng (xem hình 4.7).
Bước 3- Tạo khóa bí mật và công khai
Nh n nút P B để tạo khóa công khai, nh n nút PRI để tạo khóa bí mật cho các thành viên. Các giá trị của khóa sẽ được hiển thị trên chương trình ở các ô hiển thị bên cạnh tương ứng (hình 4.7).
Hình 4.7. Kh i tạo chương trình và kh i tạo khóa bí mật và công khai
Bước 4 - Tạo chữ ký bội
Khi nh n vào nút First Element (E), chương trình sẽ tính toán và hiển thị giá trị đầu ra của hàm băm văn bản đã ký với các tham số ngẫu nhiên. Nếu nh n vào nút
Second Element (S), chương trình sẽ đưa ra thành phần thứ hai của chữ ký. Nút First Parameter (R) và Second Parameter (T) sẽ hiển thị các tham số công khai cần gửi đi nhằm hỗ trợ cho quá trình xác thực chữ ký tuần tự (xem hình 4.8 và 4.9).
Bước 5 – Xác thực chữ ký
Cũng như chương trình chữ ký bội ngang hàng, để xác thực chữ ký ta có thể nhập vào một văn bản như có nội dung như văn bản gốc trong ô Message hoặc mở từ một file đã lưu trữ bằng nút Browse . Nội dung file sẽ được hiển thị trên ô Content of Sending Message. Khi nh n vào nút First Element (H), chương trình sẽ tính toán và hiển thị giá trị đầu ra của hàm băm văn bản đã ký với các tham số ngẫu nhiên. Nếu nh n vào nút Second Element (Z), chương trình sẽ đưa ra thành phần thứ hai của chữ ký bội. Nếu giá trị Hvà E là như nhau, ta kết luận văn bản gốc không bị chỉnh sửa và các chữ ký bội là hợp lệ. Quá trình thực hiện cụ thể việc xác thực chữ ký trong hai trường hợp điển hình (hợp lệ và không hợp lệ) được minh họa trong hình 4.8 và hình 4.9.
Hình 4.8. Tạo và xác thực chữ ký bội tuần tự trong trường hợp đúng
Hình 4.9. Tạo và xác thực chữ ký bội tuần tự trong trường hợp sai
KẾT LUẬN
Sau thời gian nghiên cứu, được sự hướng dẫn tận tình của Thầy giáo PGS.TS. Trịnh Nhật Tiến, tôi đã hoàn thành luận văn “Nghiên cứu chữ ký số bội và ứng dụng trong thương mại điện tử’’.Luận văn đã đạt được ba kết quả chính như sau:
1./ Nghiên cứu tài liệu để hệ thống lại các v n đề sau: - Hệ mật mã trên đường cong Elliptic
- Chữ ký số bội trên đường cong Elliptic
2./ Thử nghiệm ứng dụng chữ ký số bội trong thương mại điện tử Minh chứng: có chương trình.
3./ Đề xu t hai lược đồ chữ ký số bội trên đường cong Elliptic
Minh chứng: Có bài báo đăng tại: Tạp chí Nghiên cứu khoa học và công nghệ Quân sự - Số đặc san ACEIT’12, 11-2012, trang 81-87.
Hướng phát triển tiếp theo của luận văn là: Nghiên cứu cải tiến tăng tốc độ tính toán; Đánh giá, so sánh hiệu quả của hai lược đồ đã đề xu t trên cùng một ứng dụng; Áp dụng hai lược đồ chữ ký bội này trong các lĩnh vực khác ngoài thương mại điện tử.
Do thời gian nghiên cứu có hạn cộng với năng lực bản thân còn hạn chế, luận văn chắc chắn sẽ không tránh khỏi một số sai sót nh t định. Tôi r t mong nhận được ý kiến đóng góp của các Thầy Cô, các bạn đồng nghiệp cùng các cá nhân quan tâm để nội dung luận văn được hoàn thành với ch t lượng tốt hơn.
Cuối cùng, Em xin cảm ơn Thầy giáo PGS.TS. Trịnh Nhật Tiến đã tận tình giúp đỡ em hoàn thành nội dung nghiên cứu đề ra. Xin cảm ơn các Thầy Cô trong Khoa Công Nghệ thông tin – Trường Đại học Công nghệ - Đại học Quốc gia Hà nội đã tận tình giảng dạy cung c p kiến thức cho em trong suốt khóa học.
DANH MỤC CÔNG TRÌNH KHOA HỌC CÓ LIÊN QUAN
1. Dương Thị Mai Thương, Trịnh Nhật Tiến. Lược đồ chữ ký số bội trên đường cong Elliptic. Tạp chí Nghiên cứu khoa học và công nghệ Quân sự - Số đặc san ACEIT’12, 11-2012, trang 81-87.
TÀI LIỆU THAM KHẢO Tiếng Việt:
1. Trịnh Nhật Tiến. Một số v n đề về an toàn thông tin, một số chữ ký dùng trong giao dịch số.
2. Phan Đình Diệu – Lý thuyết mật mã và an toàn thông tin. Nxb Đại học Quốc Gia Hà Nội, 2006.
3. TS. Nguyễn Đăng Hậu. Kiến thức thương mại số 11 - 2004.
Tiếng Anh :
4. Chaum, David, van Heijst, Eugene and Pfitzmann, Birgit, Cryptographically strong undeniable signatures, unconditionally secure for the signer (extended abstract)
5. Ecient Convertible Undeniable Signature Schemes - D.Chaum, E. van Heys
6. K. Itakura and K. Nakamura, “A public key cryp-tosystem suitable for digital multisignatures," NEC Research and Development, vol. 71, pp. 1-8, 1983.
7. T. S. Chen, K. H. Huang, and Y. F. Chung, “Digital multi-signature scheme based on the elliptic curve cryptosystem," J. Computer Science and Technology,vol. 19, no. 4, pp. 570, 2004.
8. D. Liu, P. Lio, and Y. Q. Dai, “Attack on digital multi-signature scheme based on the elliptic curve cryptosystem," Journal of Computer Science and Technology, vol. 22, no. 1, pp. 92-94, 2007.
9. Michels M, P Horster. On the risk of discruption in several multiparty signature schemes. In Asiacrypt’96, LNCS 1163, Kyongju, Korea, Nov, 3-7, 1996, pp.334-345.
10. Hemlal Sahu and Birendra Kumar Sharma. An MSS Based on the Elliptic Curve Cryptosystem. In International Journal of Network Security, Vol.11, No.2, PP.118 - 120, Sept. 2010.
11. Miler V S. ses of elliptic curves in cryptogrphy. In Proc. Crypto’85, LNCS 218, Springer – Verlag, 1985, pp.417-426.
12. Koblitz N.Elliptic curve cryptosystems. Mathematics of Coputation, 1987, 48: 203-209. 13. L. Harn, Group-oriented (t,n) threshold digital signature scheme and digital multisignature, IEEE Proc. on Computers and Digital Techniques, vol.141, no.5, pp.307-313, 1994.
14. A.J.Menezes, P.C. Van Oorschot, and S.A.Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton, FL, 1997.
15. Wenbo Mao, Modern Cryptography: Theory and Practice, Prentice Hall PTR, p. 648, 2003.
16. William Stallings, Cryptography and Network Security Principles and Practices, Fourth Edition, Prentice Hall PTR, p. 592, 2005.
17. P. K. Sahoo, Dr. R. K. Chhotray, Dr. Gunamani Jena, Dr. S. Pattnaik - An Implementation Of Elliptic Curve Cryptography - International Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 1, January- 2013
18. Yunpeng Zhang, Tong Chen, Xianwei Zhang and Weidong Zhao - Improved Digital Signature Scheme Based on Elliptic Curve, Research Journal of Applied Sciences, Engineering and Technology 4(18): 3437-3439, 2012