Tir cSc ket qua da nhan dup-c, de dang xac djnh dupe bieu thu'e ciia cong suat tac dung tren
dau vao Pi va tren dau ra P2 ciia M4C
P i = j v ^ G V i (12)
P2=JV2+GV2 (13)
''^y P l = ^ V 2 + ( A + G A ) V 2 (14)
. *
P 2 = | V j ^ ( A G A - ' ) - W i (15) Nghia la, cong suat tac dung tren dau vao Pi va dau ra P2 ciia M4C cd the dupe viet dud'i dang ciia
hai cap ham ma tran vd hu6ng ciia ciing mpt bien Vi hoac V2. He so truyen dat cong suat cua M4C trong truong hpp nay dupe xac dinh bd^i bieu thuc:
K _ P2 _ V2^ G V2 _ Vl (A G A"^)"^ Vl
^ Pi V^(A"*"GA)V2 v r o V i
Phan tich bieu thuc (16) cho phep xac dinh d^c tinh truyen dat dimg (dac tinh truyen dat cong suat eye dai) ciia M4C khi thuc hien quay cac tpa dp ciia cac vecto trang thai tin hi?u Vi tren dau vao va V2 tren dau ra [6].
Tren quan diem ly thuyet mach, quay cac vecto Vi, V2 cd the thuc hien nho cac M4C khong
ton hao A^, Aa m^c v&'i dau vao va dau ra ciia M4C da cho.
Gia tri ciia bieu thu'e (16) trimg voi gia tri rieng ciia ma tran dac trung.
K^ = G A ' ^ G A (17) Kjj = A G A " ^ G (18) Kjj = A G A " ^ G (18)
Neu cac M4C A^, Aa dup-c noi vd-i dau vao va dau ra ciia M4C A (hinh 4), khi dd ma tran truyen dat
Ciia cac M4C thanh phan.
A = Aa A A*i
trong truoTig hpp nay ma tran dac trung cd dang: Ki? = G A*^ G A Ka = A G A " ^ G
Do'i vd-i cac M4C khong ton hao. ma Iran iruyen dat A cua nd thoa man dicu kien:
| G A ^ = A " ^ G [ A ' ^ G = G A " ^ [ A ' ^ G = G A " ^
Do dd, thuc hien bien doi cac bieu thuc (20) ta se nhan duac:
\KP =A^^Ky5A^
K a = A " K a A ~ ^
m
(21)
(22) Bieu thuc (22) chung id rang, cac ma tran K)J va K^, K« va K^ la dong dang va do dd cac gia tri Bieu thuc (22) chung id rang, cac ma tran K)J va K^, K« va K^ la dong dang va do dd cac gia tri riengSiia nd la nhu nhau. Nghia la, dac tinh truyen dat dung ciia M4C la klidng doi khi bien doi nd nho cac M4C khong ton hao.
^/ V, Z; V, Z; - J — » — r A i2 V?z tw ^fO\ AcK // Ui A i-2^ \^2 Ap 1^20 \(^20 ^10 Mf \'2 ^20 Hinh 3 Hinh 4
Vay, bai toan xac dinh he so truyen dai cong suat cue dai ciia M4C va dieu kien thuc hien chung cd the duac dua ve bai loan gia tri rieng dd'i vd^i cac cap dang loan phuonng lrong khong gian irang thai tin hieu vdi metric G, va khi do cac phan lu ctia ma tran iruyen dai ciia cac M4C phdi hpp khong ton
hao A^, AR se dupx xac dinh nhu la tpa dp ciia cac vecto- lrong khdng gian irang ihai lin hieu.
HI. KET LUAN Tir cac ket qua nhan duoc cd the rut ra mot so' kei luan sau: Tir cac ket qua nhan duoc cd the rut ra mot so' kei luan sau:
1. Khdng gian nang lupng Irang thai lin hieu cua mach dien tuyen linh vdi thdng so tap trung cd the xem la md hinh vat ly ciia khdng gian luycn linh. Trong khong gian nang lupng Irang thai lin cd the xem la md hinh vat ly ciia khdng gian luycn linh. Trong khong gian nang lupng Irang thai lin hieu ciia M2C tuyen tinh, binh phuang dp dai vecta luong ung xac dinh cdng suai lac dung ciia M2C. Dieu nay cd y nghia thuc le, nd cho phep ihicl lap moi quan he giua vice quay vecta lrong khdng gian nang lup-ng vdi viec bien doi M2C nhd cac M4C khdng ion hao. Viec bien doi nhu ihe khong lam thay ddi dac tfnh nang luang ciia M2C.
2. Cd the dua bai loan long hop loi uu he ihd'ng luyen linh truyen lin hieu ve bai loan xac dinh gia trj rieng ciia cac dang toan phuang lrong khdng gian luyen tinh. Trong truang hop nay, cac phan gia trj rieng ciia cac dang toan phuang lrong khdng gian luyen tinh. Trong truang hop nay, cac phan tu ciia ma Iran ciia cac mach phdi hop cd the xem nhu Ipa dp ciia cac vecla trang thai lin hieu lrong khdng gian nang lupng. Dieu nay cho phep dan gian hda bai loan long hpp cac mach phoi hop.
TAI LIEU THAM KHAO 1. Kuosh A. G. - Kurs Vusei algcbr. Nauka, 1971. 1. Kuosh A. G. - Kurs Vusei algcbr. Nauka, 1971.
2. Jaglom - Princip oinositenosli Gasia. Nauka, 1996.
3. Gantmakher F. R. - Teorii malrbc. Nauka, 1967. 4. Glazman N. M. - Konechnomernoi analiz. Nauka, 1969. 4. Glazman N. M. - Konechnomernoi analiz. Nauka, 1969.
5. Lankaster P. - Teoriia matrix. Nauka, 1978.
6. G. Khau, R. Adler - Teoriia Sumiasikh serei. Nauka, 1963.
7. Feldstein A. L., Javich L. R. - Sintez chetuekhpohiosikov i vosisponosikov na SVCH. Sbiaz, 1965.
SUMMARY
T H E ENERGY SPACE OF SIGNAL STATE IN CLT^RENT LINEAR SOURCE AND ITS BASIS CHARACTERISTICS AND ITS BASIS CHARACTERISTICS
In this ac;icle, the authors have shown that the energy space of signal state in the Hnear current source with concentrated parameter is a true physical model of linear space. The relationship between linear operator effected in space of signal state and transformed matric of the linear current source has also been establised.
Based on theses results, the authors came to the conclution that the solution of the combined problem on the linear system for signal transformation will become the slution of the problem on spesific values in quadratic form in linear space - energy space of signal state.
Dia chi: Shan bai ngay 26 thdng 3 ndm 1997
(X)HQC vipx Ky thuat qudn sir,
ISSN 0866 708X
TRUNG TAM KHOA HOC TIT NHIEN VA CONG NGHE QUOC GlA NATIONAL CENTRE FOR NATURAL SCIENCE AND TECHNOLOGY OF VIETNAM NATIONAL CENTRE FOR NATURAL SCIENCE AND TECHNOLOGY OF VIETNAM
TAP CHI
WTNAMESE?30URNAL OF SCIENCE AND tECHNOLOGY
Trong d6 U^ /^ a^ bj, \k cic gid tri chuii hda cua diftn dp. d6ng diftn. sdng i6i vd sdng
pnan xa tuong iing trftn cue thii k cua maiig nhifiu cue.
Trong truemg hop riftng, dtfi vdi mang 2 cue (hinh 1), ta c6:
U a a I z-p U = a-hb I = a-b b = ap