Kính hiển vi huỳnh quang

Một phần của tài liệu hạt nano từ tính fe3o4- tính chất và ứng dụng để đánh dấu tế bào và xử lí nước bị nhiễm bẩn (Trang 25)

Khi các mẫu vật, sống hay không sống, hữu cơ hoặc vô cơ, hấp thụ rồi tái phát xạ ánh sáng, quá trình được gọi là hiện tượng phát sáng quang hóa. Nếu sự phát xạ ánh sáng vẫn kéo dài tới vài giây sau khi năng lượng (ánh sáng) kích thích thôi tác dụng, thì hiện tượng được gọi là lân quang. Còn hiện tượng huỳnh quang mô tả sự phát xạ ánh sáng chỉ tiếp tục diễn ra khi đang hấp thụ ánh sáng kích thích. Khoảng thời gian giữa lúc hấp thụ ánh sáng kích thích và lúc tái phát xạ ánh sáng trong hiện tượng huỳnh quang là cực kì ngắn, thường dưới một phần triệu giây.

Hiển vi huỳnh quang là một phương pháp tiên tiến để nghiên cứu vật chất có thể làm cho phát huỳnh quang, hoặc dưới dạng tự nhiên (gọi là sự tự phát huỳnh quang, hoặc huỳnh quang sơ cấp), hoặc sau khi xử lí với các hóa chất có khả năng huỳnh quang (gọi là huỳnh quang thứ cấp). Hiển vi huỳnh quang là sáng chế vào đầu thế kỉ 19 của August Kor, Carl Reichert, và Heinrich Lehmann, và nhiều người khác. Tuy nhiên, tiềm năng của thiết bị này không được nhận ra trong nhiều thập kỉ, và kính hiển vi huỳnh quang hiện nay là một công cụ quan trọng (có lẽ là không thể thiếu) trong ngành sinh học tế bào.

Công việc chính của hiển vi huỳnh quang là cho phép ánh sáng kích thích chiếu sáng mẫu vật, và rồi tách ánh sáng huỳnh quang phát xạ yếu hơn nhiều ra khỏi ánh sáng kích thích mạnh hơn. Như vậy, chỉ có ánh sáng phát ra từ mẫu vật đi tới mắt hoặc một máy dò khác nào đó (thường là một camera kĩ thuật số hoặc camera phim thông thường). Những vùng huỳnh quang thu được chiếu sáng rực rỡ trên nền tối với độ tương phản đủ để phát hiện được. Phông nền phía sau chất không huỳnh quang càng tối thì thiết bị càng có hiệu quả.

Hình dưới biểu diễn một hình dung có tính hình học về sự kiện xảy ra khi một mẫu vật huỳnh quang được quan sát bằng một kính hiển vi huỳnh quang. Ánh sáng tử ngoại có bước sóng hoặc tập hợp bước sóng nhất định được tạo ra bằng cách cho ánh sáng phát ra từ nguồn phát tử ngoại đi qua bộ lọc kích thích. Ánh sáng tử ngoại được lọc sẽ chiếu sáng mẫu vật, trong trường hợp này là tinh thể fluorite, chất sẽ phát ra ánh sáng huỳnh quang khi được rọi sáng bằng ánh sáng tử ngoại. Ánh sáng khả kiến phát ra từ mẫu vật, có màu đỏ trong hình 2.5, sau đó được lọc qua một tấm lọc chắn không cho ánh sáng tử ngoại phản xạ đi qua. Cần chú ý rằng đây là phương thức hiển vi duy nhất trong đó mẫu vật, sau khi bị kích thích, tạo ra ánh sáng riêng của nó. Ánh sáng phát xạ tỏa ra theo mọi hướng (góc 360 độ), không cần biết đến hướng của ánh sáng kích thích.

Hình 2.5: Nguyên lí kích thích và phát xạ

Hiển vi huỳnh quang là công cụ nghiên cứu vô giá và phổ biến nhanh chóng. Lợi thế của nó dựa trên những thuộc tính mà các công nghệ hiển vi quang khác không dễ gì có được. Việc sử dụng fluorochrome khiến nó có thể nhận dạng được các tế bào và

các thành phần tế bào hạ hiển vi và những thực thể khác có mức độ đặc trưng cao nằm giữa vật chất không huỳnh quang. Hơn nữa, hiển vi huỳnh quang có thể phát hiện sự có mặt của chất huỳnh quang với độ nhạy tinh vi. Một số lượng rất nhỏ phân tử huỳnh quang (cỡ 500 phân tử trên micro mét khối) có thể được phát hiện. Trong một mẫu vật cho trước, qua việc sử dụng phẩm nhuộm bội, các đầu dò khác nhau sẽ phát hiện sự có mặt của từng phân tử mục tiêu một. Mặc dù kính hiển vi huỳnh quang không cho độ phân giải không gian dưới giới hạn nhiễu xạ của mẫu vật tương ứng, nhưng sự có mặt của các phân tử huỳnh quang ở dưới giới hạn đó vẫn có thể nhìn thấy rõ rệt.

Một phần của tài liệu hạt nano từ tính fe3o4- tính chất và ứng dụng để đánh dấu tế bào và xử lí nước bị nhiễm bẩn (Trang 25)

Tải bản đầy đủ (PDF)

(47 trang)