Định nghĩa đạo hàm của hàm một biến số

Một phần của tài liệu Bìa giảng toán cao cấp B1 (Trang 35 - 36)

Giả sử y = f(x) là hàm sô xác định trong khoảng (a,b) và x¿e (a,b) tùy ý. Với số gia Ax sao cho X¿ + Ax € (a,b) ta lập tỉ sô

Af_ f(x,+ Áx)- f(x,)

2-0

ÂX ÂX (2-2) Ẫ Ầ . ..ự® ~ . Â f ` ÃẪ ˆ ` ` # ` Ẫ ˆ Ẫ Ầ . ..ự® ~ . Â f ` ÃẪ ˆ ` ` # ` Ẫ ˆ

Nêu tôn tại giới hạn hữu hạn Jm 1x = A thì sô A được gọi là đạo hàm của hàm sô f{x) tại

x X điểm x = Xu.

r bia —A- tra l(X,†ÂX)- ÍX,) Àf

Kihiệu f(x,) =A=Im ——— lim m (2-10)

Rõ ràng khi x, thay đổi, giá trị của f(x.) cũng thay đổi tức đạo hàm f của hàm số f{x) cũng

Gọi P- đạo hàm của hàm số f

f'() - giá trị đạo hàm của hàm số f tại điểm xu

Kihiệu (.) = [fx)]'|e = Ÿ(X)lxo (2-11)

III. Ý nghĩa hình học của đạo hàm 1.Định nghĩa tiếp tuyến của đường cong (C)

Trong mặt phẳng tọa độ Oxy cho đường cong (C).

Lẫy điểm cố định Me(C), M(x,y) và điểm

M; chạy trên (C).

Dựng cát tuyến MMI¡. Khi M; chạy trên (C) MM; sẽ quay xung quanh điểm M.

VỊ trí giới hạn của cát tuyến MM; khi M¡ tiến đến M đọc theo (C) là tiếp tuyến của đường

cong (C) tại M. Kí hiệu MT fx)

fx)+Ax

có H22 l1

2.Ý nghĩa hình học của đạo hàm ( X x+Ax

__ Giả sử đường cong (C) là đô thị của hàm số y = f(x). Giả thiệt hàm số f(x) có đạo hàm tại

điêm x.

M: có tọa độ là (x + Ax, fx + Ax)).

@ - góc giữa cát tuyến MM; với chiều đương Ox. œŒ - góc giữa tiếp tuyến MT với chiều đương Ox. Theo định nghĩa tiếp tuyến ta có:

"..ẻ. nh...

_M,jH f(xtAÁx)-f(x) Af _— MH ' (x†+Âx)-x mư

Theo định nghĩa về phải của (2-13) chính là đạo hàm f(x). Về trái của (2-13) là hệ số góc

của tiêp tuyên MÍT của đường cong (€) tại M.

Ta có †g0 (2-12) (2-13) (2-13)

Vậy đạo hàm của hàm số f(x) tại x có giá trị bằng hệ số góc của tiếp tuyến của đường cong y =Í{x) tại điêm đó.

Đây chính là ý nghĩa hình học của đạo hàm.

Một phần của tài liệu Bìa giảng toán cao cấp B1 (Trang 35 - 36)

Tải bản đầy đủ (PDF)

(50 trang)